2.已知邊長(zhǎng)為2的正方形ABCD的四個(gè)頂點(diǎn)在球O的球面上,球O的體積為$\frac{{20\sqrt{5}π}}{3}$,則OA與平面ABCD所成的角的余弦值為( 。
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

分析 如圖,設(shè)正方形的中心為O1,可得OO1⊥面ABCD,可得∠OAO1則OA與平面ABCD所成的角,cos∠OAO1=$\frac{{O}_{1}A}{OA}$=$\frac{\sqrt{2}}{\sqrt{5}}$=$\frac{\sqrt{10}}{5}$.

解答 解:如圖,設(shè)正方形的中心為O1,可得OO1⊥面ABCD,
∵正方形ABCD的邊長(zhǎng)為2,∴${O}_{1}A=\sqrt{2}$,
∵球O的體積為$\frac{{20\sqrt{5}π}}{3}$,∴$\frac{4}{3}π{R}^{3}=\frac{20\sqrt{5}}{3}π$,
∴R=$\sqrt{5}$,即OA=$\sqrt{5}$,
可得∠OAO1則OA與平面ABCD所成的角,cos∠OAO1=$\frac{{O}_{1}A}{OA}$=$\frac{\sqrt{2}}{\sqrt{5}}$=$\frac{\sqrt{10}}{5}$,
故選:C.

點(diǎn)評(píng) 本題考查了求得體積公式應(yīng)用,線面角的求解,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知正方形ABCD的對(duì)角線相交于點(diǎn)O,若隨機(jī)向此正方形內(nèi)投放一顆豆子,則它落在△AOB內(nèi)的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若x∈(1,+∞),則y=x$+\frac{4}{x-1}$的最小值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知等比數(shù)列{an}中的各項(xiàng)都是正數(shù),且${a_1},\frac{1}{2}{a_3},2{a_2}$成等差數(shù)列,則$\frac{{{a_9}+{a_{10}}+{a_{13}}}}{{{a_7}+{a_8}+{a_{11}}}}$=( 。
A.$1+\sqrt{2}$B.$1-\sqrt{2}$C.$3+2\sqrt{2}$D.$3-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在區(qū)間[-1,3]上隨機(jī)取一個(gè)實(shí)數(shù)x,則x使不等式|x|≤2成立的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.將函數(shù)f(x)=2sin2x的圖象向左平移$\frac{π}{12}$個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0,$\frac{a}{3}$]和[2a,$\frac{7π}{6}$]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{π}{3}$,$\frac{π}{2}$]B.[$\frac{π}{6}$,$\frac{π}{2}$]C.[$\frac{π}{6}$,$\frac{π}{3}$]D.[$\frac{π}{4}$,$\frac{3π}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=$\frac{{x}^{2}}{2}$-alnx(a≠0).
(1)討論f(x)的單調(diào)性和極值;
(2)證明:當(dāng)a>0時(shí),若f(x)存在零點(diǎn),則f(x)在區(qū)間(1,$\sqrt{e}$]上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=sin({2x+\frac{π}{6}})+sin({2x-\frac{π}{6}})+cos2x+1$.
(1)求函數(shù)f(x)的最小正周期和函數(shù)的單調(diào)遞增區(qū)間;
(2)已知△ABC中,角A,B,C,的對(duì)邊分別為a,b,c,若$f(A)=3,B=\frac{π}{4},a=\sqrt{3}$,求邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.A、B、C、D、E五個(gè)人參加抽獎(jiǎng)活動(dòng),現(xiàn)有5個(gè)紅包,每人各摸一個(gè),5個(gè)紅包中有2個(gè)8元,1個(gè)18元,1個(gè)28元,1個(gè)0元,(紅包中金額相同視為相同紅包),則A、B兩人都獲獎(jiǎng)(0元視為不獲獎(jiǎng))的情況有( 。
A.18種B.24種C.36種D.48種

查看答案和解析>>

同步練習(xí)冊(cè)答案