精英家教網 > 高中數學 > 題目詳情
已知l⊥α,mβ,則下面四個命題:
①α∥β則l⊥m     ②α⊥β則l∥m   ③l∥m則α⊥β  ④l⊥m則α∥β
其中正確的是___            _____     
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)如圖,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直線B1C與平面ABC成30°角,求二面角B-B1C-A的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分13分)如圖,線段,所在直線是異面直線,,,,分別是線段,,的中點.
(1) 求證:共面且,
(2) 設,分別是上任意一點,求證:被平面平分.


 
 


查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

有如下三個命題:
①分別在兩個平面內的兩條直線一定是異面直線;
②垂直于同一個平面的兩條直線是平行直線;
③過平面的一條斜線有一個平面與平面垂直;
其中正確命題的個數為­­­­­­­­­­(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=A,AB=2,以AC的中點O為球心、AC為直徑的球面交PD于點M。
(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成的角的大;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐中,底面的菱形,
側面是邊長為2的正三角形,且與底面垂直,的中點.
(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,正方體棱長為1,的中點,的中點,的中點
(1)求證:
(2)求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

關于直線與平面的命題中,一定正確的是
,則   ,則
,則   ,則

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

本小題滿分12分)
如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直,點M在AC上移動,點N在BF上移動,若CM=BN=a(0<a<).
(1)求MN的長;
(2)當a為何值時,MN的長最。
(3)當MN的長最小時,求面MNA與面MNB所成的二面角的余弦值.

查看答案和解析>>

同步練習冊答案