8.已知函數(shù)f(x)的部分圖象如圖,則f(x)的解析式可能為( 。
A.f(x)=xsinxB.f(x)=xcosx-sinxC.f(x)=xcosxD.f(x)=xcosx+sinx

分析 利用函數(shù)的圖象的奇偶性排除選項(xiàng),通過(guò)特殊點(diǎn)的函數(shù)值的判斷即可.

解答 解:由題意可知函數(shù)是奇函數(shù),可知A不正確;
f(x)=xcosx,f(x)=xcosx+sinx,當(dāng)x∈(0,$\frac{π}{2}$)時(shí),兩個(gè)函數(shù)值都是正數(shù),與函數(shù)的圖象不符,
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的圖象與函數(shù)的解析式的對(duì)應(yīng)關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列函數(shù)中,最小值是2的是( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$(0$<x<\frac{π}{2}$)
C.y=lgx+$\frac{1}{lgx}$(1<x<10)D.y=x+$\frac{2}{\sqrt{x}}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,以F1為圓心,|F1F2|為半徑的圓與雙曲線在第一、二象限內(nèi)依次交于A,B兩點(diǎn),若|F1B|=3|F2A|,則該雙曲線的離心率為( 。
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若曲線y=ax與y=logax(a>1)有一個(gè)公共點(diǎn)A,且這兩條曲線在點(diǎn)A處的切線的斜率都是1,則a的值為${e}^{\frac{1}{e}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知Z=4-3i,則Z模長(zhǎng)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.命題“?x0∈R,x3-x2+1>0”的否定是?x∈R,x3-x2+1≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如果向量$\overrightarrow a=(n,1)$與$\overrightarrow b=(4,n)$共線,且方向相反,則n的值為(  )
A.±2B.-2C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2+2x+alnx
(1)若曲線y=f(x)在x=1處切線的斜率為5,求實(shí)數(shù)a的值;
(2)當(dāng)t≥1時(shí),不等式f(2t-1)-2f(t)≥-3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)是定義在R上的奇函數(shù),滿足f(-$\frac{3}{2}$+x)=f($\frac{3}{2}$+x),當(dāng)x∈[0,$\frac{3}{2}$]時(shí),f(x)=ln(x2-x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是( 。
A.3B.5C.7D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案