A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}$(0$<x<\frac{π}{2}$) | ||
C. | y=lgx+$\frac{1}{lgx}$(1<x<10) | D. | y=x+$\frac{2}{\sqrt{x}}$-1 |
分析 利用函數(shù)的單調(diào)性或基本不等式求解函數(shù)的最小值,推出結(jié)論.
解答 解:y=x+$\frac{1}{x}$,x>0時,函數(shù)的最小值為2.x<0時,y≤-2,所以函數(shù)的最小值不是2,A不正確;
y=sinx+$\frac{1}{sinx}$(0$<x<\frac{π}{2}$)可得x=$\frac{π}{2}$時,函數(shù)取得最小值,所以B不正確;
y=lgx+$\frac{1}{lgx}$(1<x<10)當(dāng)x=10時函數(shù)的最小值為2,所以C不正確;
y=x+$\frac{2}{\sqrt{x}}$-1,函數(shù)的定義域為x>0,y=x+$\frac{1}{\sqrt{x}}$+$\frac{1}{\sqrt{x}}$-1≥3$\root{3}{x•\frac{1}{\sqrt{x}}•\frac{1}{\sqrt{x}}}$-1=2,當(dāng)且僅當(dāng)x=1時取等號.所以D正確;
故選:D.
點評 本題考查函數(shù)的最值的求法,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 72 cm3 | B. | 90 cm3 | C. | 108 cm3 | D. | 138 cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8π | B. | 12π | C. | 16π | D. | 24π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=xsinx | B. | f(x)=xcosx-sinx | C. | f(x)=xcosx | D. | f(x)=xcosx+sinx |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com