直線a,b分別是長方體相鄰兩個面上的對角線所在直線,則a,b位置關(guān)系是
 
考點:空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:a,b對角線開始于同一個頂點時相交;a,b不是開始于同一個頂點時異面;a,b沒有平行的可能.
解答: 解:∵直線a,b分別是長方體相鄰兩個面上的對角線所在直線,
∴a,b可能是相交線,a,b對角線開始于同一個頂點時相交;
a,b也可以是異面,兩個對角線a,b不是開始于同一個頂點時異面;
a,b沒有平行的可能.
故答案為:相交或異面.
點評:本題考查兩條直線的位置關(guān)系的求法,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
2
x,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
21
01
,向量
b
=
10
2
.求向量
a
,使得A2a=b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列定義:
①對于函數(shù)f(x),若存在x0∈R使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動點;
②若函數(shù)的定義域區(qū)間與值域區(qū)間完全相同,則稱該區(qū)間為函數(shù)的保值區(qū)間.
設(shè)函數(shù)f(x)=x2-2ax+a2+a(x∈R),則該函數(shù)有( 。
A、一個不動點和一個保值區(qū)間
B、兩個不動點和一個保值區(qū)間
C、兩個不動點和兩個保值區(qū)間
D、兩個不動點和三個保值區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,BC1與B1C的交點為E,AC=AB1,F(xiàn)為AA1的中點.
(1)求證:面FCB1⊥面ABC1;
(2)求證:EF∥面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,若a=
2
,b=2,sinB+cosB=
2
,求角A的大小.
(2)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,已知c=2,C=
π
3
,若△ABC的面積為
3
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
y≥1
x+y-4≤0
x-y≥0
,則x2+y2+4x+6y+14的最大值為( 。
A、42
B、
46
C、
42
D、46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,且f(1)=2
(1)判斷并證明函數(shù)f(x)在其定義域上的奇偶性;
(2)證明函數(shù)f(x)在(1,+∞)上是增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[2,5]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AB=
2
,AD=AA1=1,M是A1C1的中點.
(1)求證:CM∥平面A1BD,
(2)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

同步練習(xí)冊答案