(1)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,若a=
2
,b=2,sinB+cosB=
2
,求角A的大小.
(2)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,已知c=2,C=
π
3
,若△ABC的面積為
3
,求a+b的值.
考點:余弦定理,正弦定理
專題:解三角形
分析:(1)利用兩角和的正弦函數(shù)公式化簡:sinB+cosB=
2
,由B為三角形的內(nèi)角求出角B,根據(jù)條件和正弦定理求出sinA的值,根據(jù)邊角的關(guān)系求A;
(2)利用三角形面積公式求出ab的值,余弦定理表示出關(guān)于a與c的關(guān)系式,再由整體代換和完全平方和公式求出a+c的值.
解答: 解:(1)由sinB+cosB=
2
得,
2
sin(B+
π
4
)=
2
,
sin(B+
π
4
)=1
,
又0<B<π,所以B=
π
4

由正弦定理得,
a
sinA
=
b
sinB
,把a=
2
、b=2代入得,
sinA=
2
×
2
2
2
=
1
2
,
由a<b,則A=
π
6
;
(2)因為△ABC的面積為
3
,所以
1
2
absinC=
3

則ab=4,
又c=2,由余弦定理得,c2=a2+b2-2abcosC,
即4=(a+b)2-3ab,則(a+b)2=16,
解得a+b=4.
點評:本題考查了正弦、余弦定理,兩角和與差的正弦函數(shù)公式,以及整體代換求值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個質(zhì)點從原點出發(fā),在與x軸、y軸平行的方向按(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,1)→(2,2)→(1,2)…的規(guī)律向前移動,且每秒鐘移動一個單位長度,那么到第2014秒時,這個質(zhì)點所處位置的坐標(biāo)是(  )
A、(10,44)
B、(11,44)
C、(44,10)
D、(44,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
4
-
y2
m
=1的離心率為
7
2
,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1).
(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)=
3
2
,且g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線a,b分別是長方體相鄰兩個面上的對角線所在直線,則a,b位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖1;將線段AB圍成一個圓,使兩端點A,B恰好重合(點M從點A按逆時針方向運動至點B),如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),如圖3.圖3中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.下列說法中正確命題的序號是
 
.(填出所有正確命題的序號)

①f(
1
4
)=1;     
②f(x)在定義域上單調(diào)遞增;     
③方程f(x)=0的解是x=
1
2
;
④f(x)是奇函數(shù);                             
⑤f(x)的圖象關(guān)于點(
1
2
,0)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用單調(diào)性的定義證明函數(shù)f(x)=
x+2
x+1
在(-1,+∞)上是減函數(shù),并求函數(shù)f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x2+y2=1,則2y+x2最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
b
的夾角為120°,
a
=(2,0),|
b
|=1,則|
a
-2
b
|=
 

查看答案和解析>>

同步練習(xí)冊答案