【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
【答案】(1)x2+(y-3)2=9.(2)
【解析】試題分析:(1)根據(jù) 將圓的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程(2)由直線參數(shù)方程得,所以將直線參數(shù)方程代入圓直角坐標(biāo)方程得t2+2(cosα-sinα)t-7=0,利用韋達(dá)定理化簡(jiǎn)得,最后根據(jù)三角函數(shù)有界性求最小值.
試題解析:(1)由ρ=6sinθ得ρ2=6ρsinθ,化為直角坐標(biāo)方程為x2+y2=6y,即x2+(y-3)2=9.
(2)將的參數(shù)方程代入圓C的直角坐標(biāo)方程,得t2+2(cosα-sinα)t-7=0.
由△=4(cosα-sinα)2+4×7>0,故可設(shè)t1,t2是上述方程的兩根,
所以
又由直線過點(diǎn)(1,2),故,結(jié)合參數(shù)的幾何意義得
,當(dāng)時(shí)取等.
所以|PA|+|PB|的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號(hào)分別為A1 , A2 , A3 , 乙協(xié)會(huì)編號(hào)為A4 , 丙協(xié)會(huì)編號(hào)分別為A5 , A6 , 若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.
(1)用所給編號(hào)列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:x2+4y2=16,點(diǎn)M(2,1).
(1)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(2)求通過M點(diǎn)且被這點(diǎn)平分的弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,底面是正三角形的直三棱柱中,D是BC的中點(diǎn),.
(Ⅰ)求證:平面;
(Ⅱ)求的A1 到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)二位號(hào)碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列和第10列的數(shù)字開始從左到右依次選取兩個(gè)數(shù)字,則第四個(gè)被選中的紅色球號(hào)碼為( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,記bn= (n∈N*).
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn , 求證:對(duì)任意的n∈N* , 都有Rn<4n;
(3)記cn=b2n﹣b2n﹣1(n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn , 求證:對(duì)任意n∈N* , 都有Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1中,M,N分別為棱AB,DD1的中點(diǎn),異面直線A1M和C1N所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,△BCD為正三角形,現(xiàn)將△BCD沿BD向上折起,折起后的點(diǎn)C記為C′,且CC′= ,連接CC′,E為CC′的中點(diǎn).
文科:
(1)求證:AC′∥平面BDE;
(2)求證:CC′⊥平面BDE;
(3)求三棱錐C′﹣BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ),(),且在點(diǎn)處的切線方程為.
(Ⅰ)求, 的值;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)有且僅有一個(gè)極值點(diǎn),求的取值范圍;
(Ⅲ)設(shè)()為兩曲線(),的交點(diǎn),且兩曲線在交點(diǎn)處的切線分別為, .若取,試判斷當(dāng)直線, 與軸圍成等腰三角形時(shí)值的個(gè)數(shù)并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com