某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為9/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?

 

【答案】

12,

【解析】

試題分析:(1) 解決應(yīng)用題問題首先要解決閱讀問題,具體說就是要會用數(shù)學(xué)式子正確表示數(shù)量關(guān)系,本題解題思路清晰,就是根據(jù)扇環(huán)面的周長列函數(shù)關(guān)系式, 因為扇環(huán)面的周長為兩段弧長加兩段直線,利用弧長公式,所以 ,(2) 本題解題思路清晰,就是根據(jù)花壇的面積與裝飾總費用的比列函數(shù)關(guān)系式,再由導(dǎo)數(shù)或基本不等式求最值. 裝飾總費用為直線部分的裝飾費用與弧線部分的裝飾費用之和,而花壇的面積為大扇形面積與小扇形面積之差,求最值時要注意定義域范圍的限制.

試題解析:1)設(shè)扇環(huán)的圓心角為?,則所以, 4

2花壇的面積為7

裝飾總費用為, 9

所以花壇的面積與裝飾總費用的, 12

,,當且僅當t=18時取等號此時

答:當時,花壇的面積與裝飾總費用的比最大. 15

考點:函數(shù)關(guān)系式,弧長公式,基本不等式求最值

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為9/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為9/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇鹽城第一中學(xué)高三第二學(xué)期期初檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為9/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?

 

查看答案和解析>>

同步練習(xí)冊答案