【題目】某技術公司新開發(fā)了A,B兩種新產(chǎn)品,其質量按測試指標劃分為:指標大于或等于82為正品,小于82為次品,現(xiàn)隨機抽取這兩種產(chǎn)品各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
產(chǎn)品A | 8 | 12 | 40 | 32 | 8 |
產(chǎn)品B | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計產(chǎn)品A,產(chǎn)品B為正品的概率;
(2)生產(chǎn)一件產(chǎn)品A,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,次品則虧損20元;在(1)的前提下.記X為生產(chǎn)一件產(chǎn)品A和一件產(chǎn)品B所得的總利潤,求隨機變量X的分布列和數(shù)學期望.
【答案】
(1)解:由檢測結果統(tǒng)計表,得產(chǎn)品A為正品的概率為: = ,
產(chǎn)品B為正品的概率為: =
(2)解:隨機變量X的所有取值為180,90,60,﹣30,
P(X=180)= = ,
P(X=90)= = ,
P(X=60)= = ,
P(X=﹣30)= = ,
∴X的分布列為:
X | 180 | 90 | 60 | ﹣30 |
P |
E(X)= =132
【解析】(1)由檢測結果統(tǒng)計表,利用等可能事件概率計算公式能估計產(chǎn)品A,產(chǎn)品B為正品的概率.(2)隨機變量X的所有取值為180,90,60,﹣30,分別求出相應的概率,由此能求出X的分布列和E(X).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0且a≠1)在R上單調(diào)遞減,且關于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數(shù)解,則a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點, 是橢圓的頂點, 是直線與橢圓的另一個交點, .
(1)求橢圓的離心率;
(2)已知的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)據(jù)是宜昌市個普通職工的年收入,設這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )
A. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校按分層抽樣的方法從高中三個年級抽取部分學生調(diào)查,從三個年級抽取人數(shù)的比例為如圖所示的扇形面積比,已知高二年級共有學生1 200人,并從中抽取了40人.
(1)該校的總人數(shù)為多少?(2)三個年級分別抽取多少人?
(3)在各層抽樣中可采取哪種抽樣方法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面內(nèi)兩定點和,動點,滿足,動點的軌跡為曲線,給出下列五個命題:
①存在,使曲線過坐標原點;
②對于任意,曲線與軸有三個交點;
③曲線關于軸對稱,但不關于軸對稱;
④若三點不共線,則周長最小值為;
⑤曲線上與不共線的任意一點關于原點對稱的點為,則四邊形的面積不大于.
其中真命題的序號是__________(填上所有正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<π的圖象向左平移 個單位,再將圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)所得的圖象解析式為y=sinx,則y=sin(ωx+φ)圖象上離y軸距離最近的對稱中心為( )
A.( ,0)
B.( π,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A、B、C的對應邊分別為a、b、c,若向量 =(a﹣b,1)與向量 =(a﹣c,2)共線,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圓的半徑為14,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com