定義在R上的奇函數(shù)f(x)滿足f(x+4)=f(x-2),則f(3)的值為( 。
A、
1
2
B、0
C、3
D、9
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)奇函數(shù)f(x),得出f(-x)=-f(x),再令x=-1代入f(x+4)=f(x-2),即可求解.
解答: 解:∵定義在R上的奇函數(shù)f(x),
∴f(-x)=-f(x),
把x=-1代入f(x+4)=f(x-2),
f(-1+4)=f(-1-2),∴f(3)=f(-3)
f(-3)=-f(3),
∴f(3)=-f(3)
∴f(3)=0,
故選:B
點(diǎn)評(píng):本題考查奇函數(shù)性質(zhì)及其應(yīng)用,考查函數(shù)求值,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=log0.2(x2+6x+5)的單調(diào)遞減區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=-lg2x+6lgx的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在長(zhǎng)方體ABCD-EFGH中,AD=2,AB=AE=1,M為矩形AEHD內(nèi)的一點(diǎn),如果∠MGF=∠MGH,MG和平面EFG所成角的正切值為
1
2
,那么點(diǎn)M到平面EFGH的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y、z為非零實(shí)數(shù),代數(shù)式
x
|x|
+
y
|y|
+
z
|z|
+
xyz
|xyz|
的值所成的集合是M,則M=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一船在海面 A 處望見(jiàn)兩燈塔 P,Q 在北偏西15°的一條直線上,該船沿東北方向航行4海里到達(dá) B 處,望見(jiàn)燈塔 P 在正西方向,燈塔 Q 在西北方向,則兩燈塔的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-lnx,若不等式f(x)≥bx-2對(duì)任意x∈(0,+∞)恒成立,則實(shí)數(shù)b的取值范圍是(  )
A、(-∞,1-
1
e2
]
B、[1-
1
e2
,+∞)
C、(0,1-
1
e2
]
D、[1-
1
e2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f x=3sin2x+2
3
sinxcosx+5cos2x
(1)若f(α)=5,求tanα的值;
(2)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(2a-c)cosB=bcosC,求函數(shù)f(x)在(0,B)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2kax+(k-3)a-x (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(2)<0,試判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(x2-x)+f(tx+4)<0恒成立的t的取值范圍;
(3)若f(2)=3,且g(x)=2x+2-x-2mf(x)在[2,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案