【題目】在直角坐標(biāo)系xOy 中,曲線C1的參數(shù)方程為:(),M是上的動點(diǎn),P點(diǎn)滿足,P點(diǎn)的軌跡為曲線.
(1)求的參數(shù)方程;
(2)在以O(shè)為極點(diǎn),x 軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求.
【答案】(1)的參數(shù)方程為(為參數(shù))(2)
【解析】
(1)設(shè)P(x,y),則由條件知,根據(jù)M點(diǎn)在上,代入的參數(shù)方程,即可求出的參數(shù)方程(2)寫出曲線,曲線的極坐標(biāo)方程,求出射線=與曲線,曲線交點(diǎn)的極徑1,2,根據(jù)|AB|=|2-1|求解即可.
(1)由題意的參數(shù)方程為
設(shè)P(x,y),則由條件知.由于M點(diǎn)在上,所以
即
從而的參數(shù)方程為(為參數(shù))
(2)曲線的極坐標(biāo)方程為=4sin,
曲線的極坐標(biāo)方程為=12sin.
射線=與的交點(diǎn)A的極徑為1=4sin,
射線=與的交點(diǎn)B的極徑為2=12sin.
所以|AB|=|2-1|=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中, , ,點(diǎn)是上的動點(diǎn).現(xiàn)將矩形沿著對角線折成二面角,使得.
(Ⅰ)求證:當(dāng)時, ;
(Ⅱ)試求的長,使得二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)K(-1,0)為直線l與拋物線C準(zhǔn)線的交點(diǎn),直線l與拋物線C相交于A,B兩點(diǎn).
(1)求拋物線C的方程;
(2)設(shè)·=,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù) (、為常數(shù)),曲線在點(diǎn)處的切線方程是.
(1)求、的值
(2)求的最大值
(3)設(shè),證明:對任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直棱柱ABC-A1B1C1的底面△ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,如圖,以C為原點(diǎn),分別以CA,CB,CC1為x,y,z軸建立空間直角坐標(biāo)系.
(1)求平面A1B1C的法向量;
(2)求直線AC與平面A1B1C夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)從某學(xué)校高一年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于和之間,將測量結(jié)果按如下方式分成6組:第1組,第2組,…,第6組,下圖是按上述分組方法得到的頻率分布直方圖.
(1)求這50名男生身高的中位數(shù),并估計該校高一全體男生的平均身高;
(2)求這50名男生當(dāng)中身高不低于176的人數(shù),并且在這50名身高不低于176的男生中任意抽取2人,求這2人身高都低于180的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個極值點(diǎn), ().
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè),若函數(shù)的兩個極值點(diǎn)恰為函數(shù)的兩個零點(diǎn),當(dāng)時,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com