設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a+1)x+(a2-14)=0},若A∩B=A,求實(shí)數(shù)a的值.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:本題的關(guān)鍵是根據(jù)集合A={x|x2-3x+2=0},B={x|x2+(a+1)x+(a2-14)=0},找到集合A、B的元素,再由A∩B=A等價(jià)于A⊆B可得a的值.
解答: 解:∵A={x|x2-3x+2=0},
∴A={1,2}
又∵A∩B=A,
∴A⊆B
∵B={x|x2+(a+1)x+(a2-14)=0},
∴x=1,2是方程x2+(a+1)x+(a2-14)=0的根
∴將x=1帶入可得,實(shí)數(shù)a的值為:a=-4
點(diǎn)評(píng):本題主要考查集合包含基本運(yùn)算,屬于基礎(chǔ)題.要正確判斷兩個(gè)集合間包含的關(guān)系,必須對(duì)集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認(rèn)清集合的特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
kx+1,(-3≤x<0)
2sin(ωx+φ),(0≤x≤
3
)(-π<φ<π)
 
 
的圖象如圖,則k+ω+
φ
π
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)g(x)=asinxcosx(a>0)的最大值為
1
2
,則函數(shù)f(x)=sinx+acosx的圖象的一條對(duì)稱軸方程為( 。
A、x=0
B、x=-
4
C、x=-
π
4
D、x=-
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠的固定成本為3萬元,該工廠每生產(chǎn)100臺(tái)某產(chǎn)品的生產(chǎn)成本為1萬元,設(shè)生產(chǎn)該產(chǎn)品x(百臺(tái)),其總成本為g(x)萬元(總成本=固定成本+生產(chǎn)成本),并且銷售收人r(x)滿足r(x)=
-0.5x2+7x-10.5  (0≤x≤7)
13.5  (x>7)

假定該產(chǎn)品產(chǎn)銷平衡,根據(jù)上述統(tǒng)計(jì)規(guī)律求:
(Ⅰ)要使工廠有盈利,產(chǎn)品數(shù)量x應(yīng)控制在什么范圍?
(Ⅱ)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí)盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,測(cè)量河對(duì)岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)側(cè)點(diǎn)C與D.現(xiàn)測(cè)得∠BCD=60°,∠BDC=75°,CD=50
2
,并在點(diǎn)C測(cè)得塔頂A的仰角為60°,求塔高AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2
+2lnx,曲線y=f(x)在x=1處的切線斜率為4.
(1)求a的值及切線方程;
(2)點(diǎn)P(x,y)為曲線y=f′(x)上一點(diǎn),求y-x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x-y,x+y,xy},B={x2+y2,x2-y2,0},且A⊆B,B⊆A,求實(shí)數(shù)x,y的值和集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F(x)=sin(x+
4
)+cos(x-
4
),(x∈R)
(1)求F(x)的最小正周期、最小值、圖象對(duì)稱軸方程;
(2)若cos(α-β)=
4
5
,cos(α+β)=-
4
5
,0<α<β≤
π
2
,求F2(β)-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
0
(2x-3)dx
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案