【題目】已知A(1,﹣1),B(2,2),C(3,0),求點(diǎn)D的坐標(biāo),使直線CD⊥AB,且CB∥AD.
【答案】解:設(shè)點(diǎn)D的坐標(biāo)為(x,y),由已知得,直線AB的斜率KAB=3,
直線CD的斜率KCD= ,直線CB的斜率KCB=﹣2,直線AD的斜率KAD= .
由CD⊥AB,且CB∥AD,得 ,
所以點(diǎn)D的坐標(biāo)是(0,1)
【解析】設(shè)點(diǎn)D的坐標(biāo)為(x,y),由已知得,直線AB的斜率KAB=3,直線CB的斜率KCB=﹣2,表示出直線CD的斜率KCD和直線AD的斜率KAD,由兩直線垂直斜率之積為-1,兩直線平行斜率相等列出等式,解出即可得到D點(diǎn)的坐標(biāo).
【考點(diǎn)精析】利用兩條直線平行與傾斜角、斜率的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賽季甲、乙兩位運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖如圖所示:
(1)從甲、乙兩人的這5次成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙的成績(jī)高的概率;
(2)試用統(tǒng)計(jì)學(xué)中的平均數(shù)、方差知識(shí)對(duì)甲、乙兩位運(yùn)動(dòng)員的測(cè)試成績(jī)進(jìn)行分析.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (a≠0).
(1)已知函數(shù)f(x)在點(diǎn)(0,1)處的斜率為1,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若a>0,g(x)=x2emx , 且對(duì)任意的x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,|φ|<π)的部分圖象如圖所示,則下列結(jié)論正確的是( )
A.函數(shù)f(x)的最小正周期為
B.直線x=﹣ 是函數(shù)f(x)圖象的一條對(duì)稱軸
C.函數(shù)f(x)在區(qū)間[﹣ , ]上單調(diào)遞增
D.將函數(shù)f(x)的圖象向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,則g(x)=2sin2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由;
(3)求證:當(dāng)x∈(0,e]時(shí),e2x2﹣ x>(x+1)lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)y= sin2x+cos2x的圖象,只需將函數(shù)y=2sin2x的圖象( )
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且a,b,c成等比數(shù)列,求f(B)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若過(guò)定點(diǎn)M(﹣1,0)且斜率為k的直線與圓x2+4x+y2﹣5=0在第一象限內(nèi)的部分有交點(diǎn),則k的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com