【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,|φ|<π)的部分圖象如圖所示,則下列結(jié)論正確的是( )

A.函數(shù)f(x)的最小正周期為
B.直線x=﹣ 是函數(shù)f(x)圖象的一條對稱軸
C.函數(shù)f(x)在區(qū)間[﹣ , ]上單調(diào)遞增
D.將函數(shù)f(x)的圖象向左平移 個單位,得到函數(shù)g(x)的圖象,則g(x)=2sin2x

【答案】D
【解析】解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,|φ|<π)的部分圖象,

可得A=2,圖象的一條對稱軸方程為x= = ,一個對稱中心為為( ,0),

= = ,∴T= ,∴ω=2,

代入( ,2)可得2=2sin(2× +φ),∵|φ|<π,∴φ=﹣ ,

∴f(x)=2sin(2x﹣ ),將函數(shù)f(x)的圖象向左平移 個單位,可得g(x)=2sin[2(x+ )﹣ ]=2sin2x,

所以答案是:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如何把一條長為m的繩子截成3段,各圍成一個正方形,使這3個正方形的面積和最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C=
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x+2)2+y2=5,直線l:mx﹣y+1+2m=0,m∈R.
(1)求證:對m∈R,直線l與圓C總有兩個不同的交點A、B;
(2)求弦AB的中點M的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數(shù)m,使得圓C上有四點到直線l的距離為 ?若存在,求出m的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,數(shù)列{an}的前n項的和記為Sn
(1)求S1 , S2 , S3的值,猜想Sn的表達式;
(2)請用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +ax,x>1.
(1)若函數(shù)f(x)在 處取得極值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有兩個不等實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,﹣1),B(2,2),C(3,0),求點D的坐標(biāo),使直線CD⊥AB,且CB∥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】游樂場推出了一項趣味活動,參加活動者需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù),設(shè)兩次記錄的數(shù)分別為x,y,獎勵規(guī)則如下:
①若xy≤3,則獎勵玩具一個;②若xy≥8,則獎勵水杯一個;③其余情況獎勵飲料一瓶,假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻,小亮準(zhǔn)備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請你設(shè)計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

同步練習(xí)冊答案