2.我國(guó)魏晉時(shí)期的數(shù)學(xué)家劉徽在《九章算術(shù)注》中首創(chuàng)割圓術(shù):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形割圓,通過逐步增加正多邊形的邊數(shù)而使正多邊形的周長(zhǎng)無限接近圓的周長(zhǎng),進(jìn)而來求得較為精確的圓周率,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,其中n表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為(數(shù)據(jù)sin15°≈0.2588,sin10°≈0.1736,sin7.50≈0.1306)( 。
A.3,3.1248,3.1320B.3,3.1056,3.1248C.3,3.1056,3.1320D.3,3.1,3.140

分析 列出循環(huán)過程中S與n的數(shù)值,滿足判斷框的條件即可結(jié)束循環(huán).

解答 解:模擬執(zhí)行程序,可得:
n=6,S=6sin30°=3,輸出S的值為3,
不滿足條件n≥18,執(zhí)行循環(huán)體,n=12,S=12×sin15°=3.1056,輸出S的值為3.1056,
不滿足條件n≥18,執(zhí)行循環(huán)體,n=24,S=24×sin7.5°=3.1320,輸出S的值為3.1320,
滿足條件n≥18,退出循環(huán).
故選:C.

點(diǎn)評(píng) 本題考查循環(huán)框圖的應(yīng)用,考查了計(jì)算能力,注意判斷框的條件的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線C:y2=4x焦點(diǎn)為F,點(diǎn)D為其準(zhǔn)線與x軸的交點(diǎn),過點(diǎn)F的直線l與拋物線相交于A,B兩點(diǎn),則△DAB的面積S的取值范圍為( 。
A.[5,+∞)B.[2,+∞)C.[4,+∞)D.[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為2ρsinθ+ρcosθ=10,曲線C1:$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)).
(1)求曲線C1的普通方程;
(2)若點(diǎn)M在曲線C1上運(yùn)動(dòng),試求出M到曲線C的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)xOy中,已知圓C1:x2+y2=4,圓C2:(x-2)2+y2=4.
(1)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別求圓C1,C2的極坐標(biāo)方程;
(2)求圓C1與C2的公共弦的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列參數(shù)方程能與方程y2=x表示同一曲線的是(  )
A.$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$(t為參數(shù))
B.$\left\{{\begin{array}{l}{x={{sin}^2}t}\\{y=sint}\end{array}}\right.$(t為參數(shù))
C.$\left\{\begin{array}{l}x=\frac{1-cos2t}{1+cos2t}\\ y=tant\end{array}\right.$(t為參數(shù))
D.$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{|t|}}\end{array}\right.$(t為參數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.判斷居民戶是否小康的一個(gè)重要指標(biāo)是居民戶的年收入,某市從轄區(qū)內(nèi)隨機(jī)抽取100個(gè)居民戶,對(duì)每個(gè)居民戶的年收入與年結(jié)余的情況進(jìn)行分析,設(shè)第i個(gè)居民戶的年收入xi(萬(wàn)元),年結(jié)余yi(萬(wàn)元),經(jīng)過數(shù)據(jù)處理的:$\sum_{i=1}^{100}{x}_{i}$=400,$\sum_{i=1}^{100}{y}_{i}$=100,$\sum_{i=1}^{100}{x}_{i}{y}_{i}$=900,$\sum_{i=1}^{100}{{x}^{2}}_{i}$=2850.
(1)已知家庭的年結(jié)余y對(duì)年收入x具有線性相關(guān)關(guān)系,求線性回歸方程;
(2)若該市的居民戶年結(jié)余不低于5萬(wàn),即稱該居民戶已達(dá)小康生活,請(qǐng)預(yù)測(cè)居民戶達(dá)到小康生活的最低年收入應(yīng)為多少萬(wàn)元?
附:在y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}^{2}}_{i}-n{\overline{x}}^{2}}$,a=$\overline{y}-b\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知兩個(gè)具有線性相關(guān)關(guān)系的變量的一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),由這些數(shù)據(jù)得到的回歸直線l的方程為$\widehat{y}$=$\widehatx+\widehat{a}$,若$\overline{x}$=$\frac{1}{n}\sum_{i=1}^{n}{x}_{i}$,$\overline{y}$=$\frac{1}{n}\sum_{i=1}^{n}{y}_{i}$,則下列各點(diǎn)中一定在l上的是( 。
A.($\overline{x}$,$\overline{y}$)B.($\overline{x}$,0)C.(0,$\overline{y}$)D.(0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.點(diǎn)(0,2)關(guān)于直線l:x+y-1=0的對(duì)稱點(diǎn)的坐標(biāo)為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$??(θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$
(1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案