【題目】已知橢圓的右焦點為,離心率為,設(shè)直線的斜率是,且與橢圓交于, 兩點.

Ⅰ)求橢圓的標(biāo)準(zhǔn)方程.

Ⅱ)若直線軸上的截距是,求實數(shù)的取值范圍.

Ⅲ)以為底作等腰三角形,頂點為,求的面積.

【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ) .

【解析】試題分析:

()由題意求得 ,則橢圓的標(biāo)準(zhǔn)方程為

()聯(lián)立直線方程與橢圓方程,結(jié)合,可得實數(shù)的取值范圍是:

()利用弦長公式可得,

利用兩點之間距離公式有

則三角形的面積

試題解析:

(Ⅰ)由已知得,

解得: ,又

∴橢圓的標(biāo)準(zhǔn)方程為

(Ⅱ)若直線軸上的截距是,

則可設(shè)直線的方程為,

代入得:

,

,解得: ,

故實數(shù)的取值范圍是:

(Ⅲ)設(shè)的坐標(biāo)分別為,

的中點為

, ,

, ,

因為是等腰的底邊,

所以,∴,

,解得: ,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為公差不為的等差數(shù)列, 為前項和, 的等差中項為,且.令數(shù)列的前項和為

1)求

2)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對應(yīng)的區(qū)間分別為, , , ,繪制出頻率分布直方圖.

(1)求的值,并計算完成年度任務(wù)的人數(shù);

(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);

(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,其前項和為 是等比數(shù)列,且, ,

(1)求數(shù)列的通項公式;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內(nèi),當(dāng)x= 時,f(x)取得最大值3;當(dāng)x= 時,f(x)取得最小值﹣3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線、軸交于、兩點.

Ⅰ)若點、分別是雙曲線的虛軸、實軸的一個端點,試在平面上找兩點、,使得雙曲線上任意一點到、這兩點距離差的絕對值是定值.

Ⅱ)若以原點為圓心的圓截直線所得弦長是,求圓的方程以及這條弦的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) =2.718………),

(I) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(II)當(dāng)時,不等式對任意恒成立,

求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是圓的直徑,點是圓上異于的點,直線度平面, 、分別是、的中點.

(Ⅰ)設(shè)平面與平面的交線為,求直線與平面所成角的余弦值;

(Ⅱ)設(shè)(Ⅰ)中的直線與圓的另一個交點為點,且滿足, ,當(dāng)二面角的余弦值為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A、B、C三點滿足 = +
(1)求證:A、B、C三點共線;
(2)已知A(1,cosx)、B(1+sinx,cosx),x∈[0, ],f(x)= +(2m+ )| |+m2的最小值為5,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案