【題目】已知函數(shù)(
,
=2.718………),
(I) 當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(II)當(dāng)時(shí),不等式
對任意
恒成立,
求實(shí)數(shù)的最大值.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為
和
,單調(diào)遞減區(qū)間為
;
(2)符合題意的實(shí)數(shù)的最大值為
.
【解析】試題分析:(1)求函數(shù)單調(diào)區(qū)間,即求導(dǎo)研究導(dǎo)函數(shù)的正負(fù),導(dǎo)函數(shù)大于零求增區(qū)間,導(dǎo)函數(shù)小于零求減區(qū)間;(2)這是不等式恒成立求參的問題,轉(zhuǎn)化為,
對任意
恒成立,再求導(dǎo)研究函數(shù)的單調(diào)性,求最值即可.
(1)
由可知,
令得
或
令得
即 此時(shí)函數(shù)的單調(diào)遞增區(qū)間為
和
,單調(diào)遞減區(qū)間為
;
(2)當(dāng)時(shí),不等式
即
令,
對任意
恒成立
又
當(dāng)時(shí),
,所以
在
上遞增,且最小值為
(i)當(dāng),即
時(shí),
對任意
恒成立
在
上遞增,
當(dāng)
時(shí),
滿足題意; (ii)當(dāng)
,即
時(shí),
由上可得存在唯一的實(shí)數(shù),使得
,可得當(dāng)
時(shí),
,
在
上遞減,此時(shí)
不符合題意; 綜上得,當(dāng)
時(shí),滿足題意,即符合題意的實(shí)數(shù)
的最大值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某出租車公司響應(yīng)國家節(jié)能減排的號召,已陸續(xù)購買了140輛純電動汽車作為運(yùn)營車輛,目前我國主流純電動汽車按續(xù)航里程數(shù).(單位:公里)分為3類,即
類:
,
類:
,
類:
,該公司對這140輛車的行駛總里程進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
類型 |
|
|
|
已行駛總里程不超過10萬公里的車輛數(shù) | 10 | 40 | 30 |
已行駛總里程超過10萬公里的車輛數(shù) | 20 | 20 | 20 |
(1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬公里的概率;
(2)公司為了了解這些車的工作狀況,決定抽取了14輛車進(jìn)行車況分析,按表中描述的六種情況進(jìn)行分層抽樣,設(shè)從類車中抽取了
輛車.
①求的值;
②如果從這輛車中隨機(jī)選取兩輛車,求恰有一輛車行駛總里程超過10萬公里的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(2cosωx,cos2ωx),
=(sinωx,1)(其中ω>0),令f(x)=
,且f(x)的最小正周期為π.
(1)求 的值;
(2)寫出 上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,離心率為
,設(shè)直線
的斜率是
,且
與橢圓
交于
,
兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)若直線在
軸上的截距是
,求實(shí)數(shù)
的取值范圍.
(Ⅲ)以為底作等腰三角形,頂點(diǎn)為
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,直線
(其中
)與曲線
相交于
、
兩點(diǎn).
(Ⅰ)若,試判斷曲線
的形狀.
(Ⅱ)若,以線段
、
為鄰邊作平行四邊形
,其中頂點(diǎn)
在曲線
上,
為坐標(biāo)原點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)
在直線
上,且拋物線
截直線
所得的弦
的長為
.
(Ⅰ)求拋物線的方程和
的值.
(Ⅱ)以弦為底邊,以
軸上點(diǎn)
為頂點(diǎn)的三角形
面積為
,求點(diǎn)
坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比為負(fù)值的等比數(shù)列{an}中,a1a5=4,a4=﹣1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= +
+…+
,求數(shù)列{an+bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記Sn為正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和,若 ﹣7
﹣8=0,且正整數(shù)m,n滿足a1ama2n=2
,則
+
的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的
區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記
表示在各區(qū)開設(shè)分店的個(gè)數(shù),
表示這個(gè)
個(gè)分店的年收入之和.
| 2 | 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與
的關(guān)系,求
關(guān)于
的線性回歸方程
;
(2)假設(shè)該公司在區(qū)獲得的總年利潤
(單位:百萬元)與
之間的關(guān)系為
,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在
區(qū)開設(shè)多少個(gè)分時(shí),才能使
區(qū)平均每個(gè)分店的年利潤最大?
(參考公式: ,其中
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com