某幾何體的三視圖如圖所示,若該正視圖面積為5,則此幾何體的體積是
 
考點:組合幾何體的面積、體積問題,由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:判斷幾何體的形狀,利用三視圖的數(shù)據(jù)求解幾何體的體積即可.
解答: 解:由三視圖可知組合體下部是棱長為2的正方體,上部是底面是正方形邊長為2,高為1d的正四棱錐,
∴組合體的體積是:2×2×2+
1
3
×2×2×1
=
28
3

故答案為:
28
3
點評:本題考查解答組合體與三視圖的關(guān)系,體積的求法考查基本知識的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
1
x
的圖象繞原點順時針旋轉(zhuǎn)45°后可得到雙曲線x2-y2=2.據(jù)此類推得函數(shù)y=
4x
x-1
的圖象的焦距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于非空實數(shù)集合A,記A*={y|?x∈A,y≤x},設(shè)非空實數(shù)集合P滿足條件“若x<1,則x∉P”且M⊆P,給出下列命題:
①若全集為實數(shù)集R,對于任意非空實數(shù)集合A,必有∁RA=A*;
②對于任意給定符合題設(shè)條件的集合M,P,必有P*⊆M*;
③存在符合題設(shè)條件的集合M,P,使得M*∩P=∅;
④存在符合題設(shè)條件的集合M,P,使得M∩P*≠∅.
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的所有值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α在第一象限,且|cos
α
2
|=-cos
α
2
,則
α
2
在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
2
x
-m在(0,3]上有且僅有一個零點,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,已知A(-2,0),B(2,0),C(1,0),P是x軸上任意一點,平面上點M滿足:
PM
PB
CM
CB
對任意P恒成立,則點M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1-2Sn=0(n∈N*),且a1=2,那么a7=( 。
A、64B、128C、32D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是以F1,F(xiàn)2為焦點的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上一點,
PF1
PF2
=0,tan∠PF1F2=
1
2
,則雙曲線的離心率為( 。
A、
6
2
B、2
C、
5
D、
5
2

查看答案和解析>>

同步練習(xí)冊答案