已知函數(shù)f(x)是R上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列{an}是等差數(shù)列,a3>0,則f(a1)+f(a3)+f(a5)的值(  )
A.恒為正數(shù)B.恒為負(fù)數(shù)
C.恒為0D.可正可負(fù)
A
利用奇函數(shù)的性質(zhì)f(0)=0以及等差數(shù)列的性質(zhì)a1+a5=2a3,關(guān)鍵判斷f(a1)+f(a5)>0.
由于f(x)是R上的單調(diào)增函數(shù)且為奇函數(shù),且a3>0,所以f(a3)>f(0)=0.
而a1+a5=2a3,所以a1+a5>0,則a1>-a5,
于是f(a1)>f(-a5),即f(a1)>-f(a5),
因此f(a1)+f(a5)>0,
所以有f(a1)+f(a3)+f(a5)>0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù).
(3)若對(duì)于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為常數(shù),且).
(1)當(dāng)時(shí),求函數(shù)的最小值(用表示);
(2)是否存在不同的實(shí)數(shù)使得,,并且,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義在R上的奇函數(shù)滿足,且在上是增函數(shù),則有( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

是否存在實(shí)數(shù)a,使函數(shù)f(x)=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù)?如果存在,說(shuō)明a可取哪些值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=則該函數(shù)為(  )
A.單調(diào)遞增函數(shù),奇函數(shù)
B.單調(diào)遞增函數(shù),偶函數(shù)
C.單調(diào)遞減函數(shù),奇函數(shù)
D.單調(diào)遞減函數(shù),偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知偶函數(shù)f(x)當(dāng)x∈[0,+∞)時(shí)是單調(diào)遞增函數(shù),則滿足f()<f(x)的x的取值范圍是(  )
A.(2,+∞)B.(-∞,-1)
C.[-2,-1)∪(2,+∞)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在實(shí)數(shù)集中定義一種運(yùn)算“”,對(duì)任意為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對(duì)任意;
(2)對(duì)任意
關(guān)于函數(shù)的性質(zhì),有如下說(shuō)法:①函數(shù)的最小值為;②函數(shù)為偶函數(shù);③函數(shù)的單調(diào)遞增區(qū)間為
其中所有正確說(shuō)法的個(gè)數(shù)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)yf(x-1)的圖象關(guān)于直線x=1對(duì)稱,且當(dāng)x∈(-∞,0),f(x)+xf′(x)<0成立,若a=(20.2f(20.2),b=(ln 2)·f(ln 2),c·f,則a,b,c的大小關(guān)系是(  ).
A.a>b>cB.b>a>c
C.c>a>bD.a>c>b

查看答案和解析>>

同步練習(xí)冊(cè)答案