【題目】已知向量a=cosωx+1,2sinωx,b=cosωx-,cosωx), ω>0.
(Ⅰ)當(dāng)ωx≠kπ+,k∈Z時(shí),若向量c=(1,0),d=(,0),且(a-c)∥(b+d),求4sin2ωx-cos2ωx的值;
(Ⅱ)若函數(shù)f(x)=a·b的圖象的相鄰兩對(duì)稱軸之間的距離為,當(dāng)x∈[],g時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
【答案】(1)-.(2)[-, -]和[-.
【解析】試題分析:(1)根據(jù)題意得到cos2ωx-2sinωxcosωx=0,tanωx=,將式子進(jìn)行齊次化得到結(jié)果即可;(2)由題意得,f(x)=a·b=2sin(2ωx+),令2kπ≤4x+≤2kπ+,進(jìn)而解得單調(diào)區(qū)間.
解析:
(I)因?yàn)閍-c=(cosωx,2sinωx),b+d=(cosωx,cosωx)
所以由(a-c)∥(b+d),得cos2ωx-2sinωxcosωx=0,
因?yàn)棣豿≠kπ+,k∈Z,所以 cosωx≠0,則 tanωx=,
所以4sin2ωx===-.
(Ⅱ)由題意得,f(x)=a·b=(cosωx+1)( cosωx-)+2 sinωx cosωx
=(2cos2ωx-1)+sin 2ωx
= cos 2ωx +sin 2ωx
=2sin(2ωx+)
因?yàn)橄噜弮蓪?duì)稱軸之間的距離為,所以·=→ω=2,
故f(x)=2sin(4x+)
令2kπ≤4x+≤2kπ+,解得是≤x≤kπ+,k∈Z
又因?yàn)閤∈[-,],
所以,取k=-1,0,可得∫(x)的單調(diào)遞增區(qū)間是[-, -]和[-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)A(-2,0),B(0,1),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a和b是計(jì)算機(jī)在區(qū)間(0,3)上產(chǎn)生的隨機(jī)數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域?yàn)镽的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對(duì)數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年一交警統(tǒng)計(jì)了某路段過(guò)往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次數(shù)y | 1 | 3 | 6 | 9 | 11 |
(Ⅰ)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+;
(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測(cè)在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到110km/h時(shí),可能發(fā)生的交通事故次數(shù).
(附:b=,=-,其中,為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知b2=ac且cosB=.
(1)求的值;
(2)設(shè),求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)加入WTO時(shí),根據(jù)達(dá)成的協(xié)議,某產(chǎn)品的市場(chǎng)供應(yīng)量P與市場(chǎng)價(jià)格x的關(guān)系近似滿足P(x)=2(1-kt)(x-b)2(其中t為關(guān)銳的稅率,且t∈[0, ),x為市場(chǎng)價(jià)格,b、k為正常數(shù)).當(dāng)t=時(shí)的市場(chǎng)供應(yīng)量曲線如圖所示.
(1)根據(jù)圖象求b、k的值;
(2)記市場(chǎng)需求量為Q,它近似滿足Q(x)=,當(dāng)P=Q時(shí)的市場(chǎng)價(jià)格稱為市場(chǎng)平衡價(jià)格,為使市場(chǎng)平衡價(jià)格不低于9元,求稅率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,點(diǎn)E,F(xiàn)分別是PB,DC的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求EF與平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)經(jīng)典名著,它在集合學(xué)中的研究比西方早1千年,在《九章算術(shù)》中,將四個(gè)面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為( )
A.200π
B.50π
C.100π
D. π
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com