設(shè)函數(shù)f(x)=x-2msin x+(2m-1)sin xcos x(m為實(shí)數(shù))在(0,π)上為增函數(shù),則m的取值范圍為(  )
A.[0,]B.(0,)C.(0,]D.[0,)
A
∵f(x)在區(qū)間(0,π)上是增函數(shù),
∴f′(x)=1-2mcos x+2(m-)cos 2x
=2[(2m-1)cos2x-mcos x+1-m]
=2(cos x-1)[(2m-1)cos x+(m-1)]>0
在(0,π)上恒成立,令cos x=t,則-1<t<1,
即不等式(t-1)[(2m-1)t+(m-1)]>0在(-1,1)上恒成立,
①若m>,則t<在(-1,1)上恒成立,
則只需≥1,即<m≤,
②當(dāng)m=時(shí),則0·t+-1<0,
在(-1,1)上顯然成立;
③若m<,則t>在(-1,1)上恒成立,
則只需≤-1,即0≤m<
綜上所述,所求實(shí)數(shù)m的取值范圍是[0,].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若曲線在點(diǎn)處的切線與直線平行,求的值;
(2)求證函數(shù)上為單調(diào)增函數(shù);
(3)設(shè),,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù),對任意的時(shí),恒成立,則a的范圍為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).若曲線在點(diǎn)處的切線與直線垂直,
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)滿足且當(dāng) 時(shí),,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)在區(qū)間上是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=x2㏑x的單調(diào)遞減區(qū)間為(    )
A.(1,1]B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊答案