已知定義域在R上的函數(shù)y=f(x)是減函數(shù),則f(a-2)-f(4-a2)<0,求a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)y=f(x)在定義域R上是減函數(shù),則能推出不等式a-2>4-a2,從而求出a的取值范圍.
解答: 解:因?yàn)閥=f(x)在定義域R上是減函數(shù),f(a-2)-f(4-a2)<0,可得f(a-2)<f(4-a2),
使用由減函數(shù)的性質(zhì)可知a-2>4-a2,解得a<-3或a>2.所以a的取值范圍是(-∞,-3)∪(2,+∞).
故答案為:(-∞,-3)∪(2,+∞).
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:cos245°-sin245°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=6
3
,E是PB上任意一點(diǎn).
(1)求證:AC⊥DE;
(2)當(dāng)△AEC面積的最小值是9時(shí),求證:EC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

{2、4、6、8}∩{2、3、5、8}=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是以F1,F(xiàn)2為焦點(diǎn)的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的任意一點(diǎn),若∠PF1F2=α,∠PF2F1=β,且cosα=
5
5
,sin(α+β)=
3
5
,則此橢圓的離心率可以為( 。
A、
3
4
B、
3
3
C、
2
4
D、
5
7
,或
5
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐A-BCD中,AB=CD,AC=BD,E、F分別是AD、BC的中點(diǎn),試用向量方法證明EF是AD與BC的公垂線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行六面體ABCD-A1B1C1D1中,M、N、P分別是CC1、B1C1、C1D1的中點(diǎn).求證:∠NMP=∠BA1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

禮堂第一排有a個(gè)座位,后面每一排比前一排多一個(gè)座位,則第n排的座位是(  )
A、n+1
B、a+(n+1)
C、a+n
D、a+(n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=-tan(2x-
4
)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案