2.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的兩個焦點(diǎn),過點(diǎn)F2的直線交橢圓于A、B兩點(diǎn),若|AB|=5,則|AF1|+|BF1|( 。
A.11B.10C.9D.16

分析 由橢圓的方程求得橢圓的長軸長,再由橢圓定義結(jié)合|AB|=5求得|AF1|+|BF1|的值.

解答 解:如圖,
由橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,得a2=16,則a=4,
又|AF1|+|BF1|+|AB|=4a=16,
且|AB|=5,∴|AF1|+|BF1|=11.
故選:A.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的定義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知三棱錐P-ABC,底面ABC是邊長為2$\sqrt{3}$的正三角形,平面PBC⊥平面ABC,PB=PC=2,D為AP上一點(diǎn),AD=2DP,O是底面三角形的重心.
(1)求證:BD⊥AC;
(2)求多面體PDOBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知ω>0且函數(shù)f(x)=cos2ωx-sin2ωx的最小正周期為π,則f(x)在[$\frac{π}{3}$,$\frac{5π}{6}$]上的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C;$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右頂點(diǎn)為A,B,點(diǎn)P為橢圓C上不同于A,B,的一點(diǎn),且直線PA,PB的斜率之積為-$\frac{1}{2}$
(1)求橢圓的離心率;
(2)設(shè)F(-1,0)為橢圓C的左焦點(diǎn),直線l過點(diǎn)F與橢圓C交與不同的兩點(diǎn)M,N,且$\overrightarrow{MF}$=3$\overrightarrow{FN}$求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.從橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn)P向x軸作垂線,垂足恰為右焦點(diǎn)F2,A是橢圓與x軸負(fù)半軸的交點(diǎn),B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP(O是坐標(biāo)原點(diǎn)),則該橢圓的離心率是( 。
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知動點(diǎn)M到點(diǎn)(8,0)的距離等于M到點(diǎn)(2,0)的距離的2倍.
(1)求動點(diǎn)M的軌跡C的方程;
(2)若直線y=kx-5與軌跡C沒有交點(diǎn),求k的取值范圍;
(3)已知圓x2+y2-8x-8y+16=0與軌跡C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC的頂點(diǎn),A(-2,0)和B(2,0),頂點(diǎn)C在橢圓$\frac{x^2}{16}+\frac{y^2}{12}=1$上,則$\frac{sinA+sinB}{sinC}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)橢圓的兩個焦點(diǎn)分別為F1,F(xiàn)2,過F2作橢圓長軸的垂線與橢圓相交,其中的一個交點(diǎn)為P,若△F1PF2為等腰直角三角形,則橢圓的離心率是(  )
A.$\sqrt{3}$-1B.$\sqrt{2}$-1C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線l與橢圓$\frac{{x}^{2}}{4}$+y2=1相交于A,B兩點(diǎn),若弦AB中點(diǎn)為(-1,$\frac{1}{2}$),則直線l的方程為x-2y+2=0.

查看答案和解析>>

同步練習(xí)冊答案