一個盒子中裝有大小相同的小球n個,在小球上分別標有1,2,3,…,n的號碼,已知從盒子中隨機的取出兩個球,兩球的號碼最大值為n的概率為
1
4
,
(Ⅰ)問:盒子中裝有幾個小球?
(Ⅱ)現(xiàn)從盒子中隨機的取出4個球,記所取4個球的號碼中,連續(xù)自然數(shù)的個數(shù)的最大值為隨機變量ξ(如取2468時,ξ=0;取1246或1245時,ξ=2;取1235時,ξ=3)求隨機變量ξ的分布列及均值.
考點:離散型隨機變量的期望與方差,等可能事件的概率
專題:概率與統(tǒng)計
分析:(Ⅰ)由題意知
C
1
n-1
C
2
n
=
1
4
,由此能求出盒子中裝有小球的個數(shù).
(Ⅱ)ξ可能的取值為0,2,3,4,分別求出相對應的概率,由此能求出ξ的分布列和數(shù)學期望.
解答: 解:(Ⅰ)由題意知
C
1
n-1
C
2
n
=
1
4

解得n=8,
∴盒子中裝有8個小球.…(6分)
(Ⅱ)ξ可能的取值為0,2,3,4,
P(ξ=2)=
40
C
4
8
=
4
7
,
P(ξ=0)=
5
C
4
8
=
1
14
,
P(ξ=3)=
20
C
4
8
=
2
7
,
P(ξ=4)=
5
C
4
8
=
1
14
,
 ξ  0  4
 P  
1
14
 
4
7
 
2
7
 
1
14
Eξ=
1
14
+2×
4
7
+3×
2
7
+4×
1
14
=
16
7
.…(14分)
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要注意排列組合的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

復數(shù)z=1+i3(i是虛數(shù)單位)的共軛復數(shù)所對應的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
a
x
+lnx
,其中a為實常數(shù).
(1)討論f(x)的單調(diào)性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求實數(shù)a的取值范圍;
(3)若a=0,設g(n)=1+
1
2
+
1
3
+…+
1
n
,h(n)=
1
23
+
2
32
+
3
43
+…+
n-1
n3
(n≥2,n∈N+).是否存在實常數(shù)b,既使g(n)-f(n)>b又使h(n)-f(n+1)<b對一切n≥2,n∈N+恒成立?若存在,試找出b的一個值,并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(2a+1)x+2lnx(a>0).
(Ⅰ) 若a≠
1
2
,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當
1
2
<a<1時,判斷函數(shù)f(x)在區(qū)間[1,2]上有無零點?寫出推理過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=msinx+
2
cosx,(m>0)的最大值為2.
(Ⅰ)求函數(shù)f(x)在[0,π]上的值域;
(Ⅱ)已知△ABC外接圓半徑R=
3
,f(A-
π
4
)+f(B-
π
4
)=4
6
sinAsinB,角A,B所對的邊分別是a,b,求
1
a
+
1
b
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正數(shù)數(shù)列{an}中,Sn為an的前n項和,若點(an,Sn)在函數(shù)y=
c2-x
c-1
的圖象上,其中c為正常數(shù),且c≠1.
(1)求數(shù)列{an}的通項公式;
(2)當c=
1
2
的時候,在數(shù)列{an}的兩項之間都按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列{bn}:an和an+1兩項之間插入n個數(shù),使這n+2個數(shù)構(gòu)成等差數(shù)列,求b2014的值;
(3)設數(shù)列{cn}滿足cn=
n,n=2k-1
2an,n=2k
,k∈N*,當c=
3
3
時候,在數(shù)列{cn}中,是否存在連續(xù)的三項cr,cr+1,cr+2,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)r的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx+3x,如果f(1-a)+f(1-a2)<0,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果(1+x+x2)(x-a)5(a為實常數(shù))的展開式中所有項的系數(shù)和為0,則展開式中含x4項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果對于一切的正實數(shù)x、y,不等式
y
4
-cos2x≥asinx-
9
y
都成立,則實數(shù)a的取值范圍
 

查看答案和解析>>

同步練習冊答案