1.計算:$\root{3}{2}$×2${\;}^{\frac{2}{3}}$+($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$=4,2${\;}^{lo{g}_{2}3+lo{g}_{4}9}$=9.

分析 根據(jù)指數(shù)冪的運算性質(zhì)和對數(shù)的運算性質(zhì)計算即可,

解答 解:$\root{3}{2}$×2${\;}^{\frac{2}{3}}$+($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$=${2}^{\frac{1}{3}+\frac{2}{3}}$+${2}^{-2×(-\frac{1}{2})}$=2+2=4,
∵log23+log49=log23+$\frac{lo{g}_{2}9}{lo{g}_{2}4}$=2log23=log29
∴2${\;}^{lo{g}_{2}3+lo{g}_{4}9}$=9,
故答案為:4,9

點評 本題考查了對數(shù)和指數(shù)冪的運算性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$滿足對任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則函數(shù)f(x)是單調(diào)減函數(shù),a的取值范圍是0<a≤$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知 f(x)是奇函數(shù),當 x>0 時,f(x)=x3-x,則 f(-2)=-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知點P在橢圓$\frac{x^2}{16}$+$\frac{y^2}{25}$=1上,它到上準線的距離4,則它到下準線的距離為$\frac{38}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓C的方程為x2+y2=4.
(1)求過點P (-1,2)與圓相切的直線I的方程;
(2)直線m過點P (-1,2),與圓C交于AB兩點,且AB=$2\sqrt{3}$,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知二次函數(shù)f(x)=x2+bx+c,當x∈R時f(x)=f(2-x)恒成立,且3是f(x)的一個零點.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=f(ax)(a>1),若函數(shù)g(x)在區(qū)間[-1,1]上的最大值等于5,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)為f(x)的導函數(shù),已知y=f′(x)的圖象如圖所示,若兩個正數(shù)a、b滿足f(2a+b)>1,則$\frac{b+1}{a+1}$的取值范圍是( 。
A.($\frac{1}{5}$,$\frac{1}{3}$)B.(-∞,3)C.(-∞,$\frac{1}{3}$)D.($\frac{1}{3}$,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖正方形ABCD中,O為中心,PO⊥面ABCD,E是PC中點,求證:
(1)PA∥平面BDE;
(2)面PAC⊥面BDE.
(3)若PA=PB=PC=PD=AB,求二面角P-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知集合A={x|1≤x<5},B={x|-a<x≤a+3}
(1)若a=1,U=R,求∁UA∩B;
(2)若B∩A=B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案