函數(shù)的定義域為,,對任意,,則的解集為:
A.(,+) | B.(,1) |
C.(,) | D.(,+) |
D
解析試題分析:設(shè)F(x)=f(x)-(2x+4),則F(-1)=f(-1)-(-2+4)=2-2=0,
又對任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,即F(x)在R上單調(diào)遞增,
則F(x)>0的解集為(-1,+∞),即f(x)>2x+4的解集為(-1,+∞).
考點:利用導數(shù)來研究函數(shù)的單調(diào)性;不等式的解法。
點評:本題主要考查學生靈活運用函數(shù)思想求解不等式,解題的關(guān)鍵在于構(gòu)建函數(shù)F(x) =f(x)-(2x+4)y以及確定這個函數(shù)的單調(diào)性。屬于中檔題。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com