一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(I)試用n表示一次摸獎中獎的概率p;
(II)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為m,用p表示恰有一次中獎的概率m,求m的最大值及m取最大值時p、n的值;
(III)當(dāng)n=15時,將15個紅球全部取出,全部作如下標(biāo)記:記上i號的有i個(i=1,2,3,4),共余的紅球記上0號.并將標(biāo)號的15個紅球放人另一袋中,現(xiàn)從15個紅球的袋中任取一球,ξ表示所取球的標(biāo)號,求ξ的分布列、期望和方差.
【答案】分析:(I)計(jì)算出從n+5個球中任取兩個的方法數(shù)和其中兩個球的顏色不同的方法,由古典概型公式,代入數(shù)據(jù)得到一次摸獎中獎的概率;
(II)求出三次摸獎中(每次摸獎后放回)恰有一次中獎的概率,利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可求出其最大值及相應(yīng)的p值;
(III)記上0號的有5個紅球,從中任取一球,有15種取法,它們是等可能的,確定變量的取值,求出相應(yīng)的概率,可得ξ的分布列、期望和方差.
解答:解:(I)一次摸獎從n+5個球中任取兩個,有Cn+52種方法,它們是等可能的,其中兩個球的顏色不同的方法有Cn1C51種,
∴一次摸獎中獎的概率P==;
(II)設(shè)每次摸獎中獎的概率為p(0<p<1),三次摸獎中(每次摸獎后放回)恰有一次中獎的概率是
m==3p3-6p2+3p(0<p<1)
求導(dǎo)數(shù)可得m′=3(p-1)(3p-1)
∴函數(shù)在(0,)上為增函數(shù),在(,1)上為減函數(shù)
∴p=時,即=,即n=20時,mmax=
(III)記上0號的有5個紅球,從中任取一球,有15種取法,它們是等可能的
故ξ的分布列是
ξ1234
P
∴Eξ=0×+1×+2×+3×+4×=2
Dξ=(0-2)2×+(1-2)2×+(2-2)2×+(3-2)2×+(4-2)2×=
點(diǎn)評:本題考查概率知識,考查學(xué)生的計(jì)算能力,求離散型隨機(jī)變量期望的步驟:①確定離散型隨機(jī)變量的取值;②寫出分布列,并檢查分布列的正確與否,即看一下所有概率的和是否為1;③求出期望.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有大小相同的2個白球和3個黑球,從中摸出一個球,放回后再摸出一個球,則兩次摸出的球恰好顏色不同的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(I)試用n表示一次摸獎中獎的概率p;
(II)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為m,用p表示恰有一次中獎的概率m,求m的最大值及m取最大值時p、n的值;
(III)當(dāng)n=15時,將15個紅球全部取出,全部作如下標(biāo)記:記上i號的有i個(i=1,2,3,4),共余的紅球記上0號.并將標(biāo)號的15個紅球放人另一袋中,現(xiàn)從15個紅球的袋中任取一球,ξ表示所取球的標(biāo)號,求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)一個口袋中裝有大小相同的2個白球和4個黑球.
(1)采取放回抽樣方式,從中摸出兩個球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個球,求摸得白球的個數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有大小相同的8個白球和7個黑球,從中任意摸出2個球,則摸出的2個球至少有一個是白球的概率是
86
105
86
105
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•孝感模擬)一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(1)記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.試問當(dāng)n等于多少時,P的值最大?
(2)在(1)的條件下,將5個白球全部取出后,對剩下的n個紅球全部作如下標(biāo)記:記上i號的有i個(i=1,2,3,4),其余的紅球記上0號,現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號,求ξ的分布列,期望和方差.

查看答案和解析>>

同步練習(xí)冊答案