將橢圓在坐標(biāo)系中作平行移動,其下方的焦點F在曲線C:+y=0上移動.

(1)求橢圓上方的頂點A的軌跡方程;

(2)問頂點A是否能落在圓M:=4的內(nèi)部?并說明理由.

答案:
解析:

  解:(1)由題設(shè)知橢圓下方的焦點為F(m,n-2),上方的頂點設(shè)是

A(x,y),則∵F在+y=0上,

+(n-2)=0.∴A點的軌跡方程是+y-5=0.

  (2)若點A能落在圓M內(nèi),則<4,將y=5-代入得

+12<0,得3<<4,即m∈,

∴頂點A落在圓M內(nèi)是可能的.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,將平面直角坐標(biāo)系中的縱軸繞點O順時針旋轉(zhuǎn)300(坐標(biāo)軸的長度單位不變)構(gòu)成一個斜坐標(biāo)系xOy,平面上任一點P關(guān)于斜坐標(biāo)系的坐標(biāo)(x,y)用如下方式定義:過P作兩坐標(biāo)軸的平行線分別交坐標(biāo)軸Ox于點M,Oy于點N,則M在Ox軸上表示的數(shù)為x,N在Oy軸上表示的數(shù)為y.在斜坐標(biāo)系中,若A,B兩點的坐標(biāo)分別為(1,2),(-2,3),則線段AB的長為
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,將平面直角坐標(biāo)系中的縱軸繞點O順時針旋轉(zhuǎn)30°(坐標(biāo)軸的長度單位不變)構(gòu)成一個斜坐標(biāo)系xOy,平面上任一點P關(guān)于斜坐標(biāo)系的坐標(biāo)(x,y)用如下方式定義:過P作兩坐標(biāo)軸的平行線分別交坐標(biāo)軸Ox于點M,Oy于點N,則M在Ox軸上表示的數(shù)為x,N在Oy軸上表示的數(shù)為y.在斜坐標(biāo)系中,若A,B兩點的坐標(biāo)分別為(1,2),(-2,3),則線段AB的長為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,將平面直角坐標(biāo)系中的縱軸繞點O順時針旋轉(zhuǎn)30°(坐標(biāo)軸的長度單位不變)構(gòu)成一個斜坐標(biāo)系xOy,平面上任一點P關(guān)于斜坐標(biāo)系的坐標(biāo)(x,y)用如下方式定義:過P作兩坐標(biāo)軸的平行線分別交坐標(biāo)軸Ox于點M,Oy于點N,則M在Ox軸上表示的數(shù)為x,N在Oy軸上表示的數(shù)為y.在斜坐標(biāo)系中,若A,B兩點的坐標(biāo)分別為(1,2),(-2,3),則線段AB的長為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:

零件的個數(shù)x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5

 

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;

(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;

(3)試預(yù)測加工10個零件需要多少時間?

(注:)

【解析】第一問中利用數(shù)據(jù)描繪出散點圖即可

第二問中,由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回歸方程。

第三問中,將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時)得到結(jié)論。

(1)散點圖如下圖.

………………4分

(2)由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,

=…=0.7,=…=1.05.

=0.7x+1.05.回歸直線如圖中所示.………………8分

(3)將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時),

∴預(yù)測加工10個零件需要8.05小時

 

查看答案和解析>>

同步練習(xí)冊答案