(2013•通州區(qū)一模)已知函數(shù)f(x)=
2x  x≤0
log2x,x>0
,則f[f(-1)]=( 。
分析:本題考查的分段函數(shù)的函數(shù)值,由函數(shù)解析式,我們可以先計算f(-1)的值,再根據(jù)f(-1)的值或范圍,代入相應的解析式求出最后的結果.
解答:解:∵-1<0,
∴f(-1)=2-1=
1
2
,且
1
2
>0,
∴f[f(-1)]=f(
1
2
)=log2
1
2
=-1
故選D.
點評:本題考查分段函數(shù)求函數(shù)值,按照由內(nèi)到外的順序逐步求解.要確定好自變量的取值或范圍,再代入相應的解析式求得對應的函數(shù)值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•通州區(qū)一模)在△ABC中,角A,B,C的對邊分別為a,b,c,則“a=2bcosC”是“△ABC是等腰三角形”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•通州區(qū)一模)對任意兩個實數(shù)x1,x2,定義max(x1,x2)=
x1x1x2
x2,x1x2
若f(x)=x2-2,g(x)=-x,則max(f(x),g(x))的最小值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•通州區(qū)一模)已知圓的直角坐標方程為x2+y2-2y=0.在以原點為極點,x軸正半軸為極軸的極坐標系中,該圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•通州區(qū)一模)奇函數(shù)f(x)的定義域為[-2,2],若f(x)在[0,2]上單調(diào)遞減,且f(1+m)+f(m)<0,則實數(shù)m的取值范圍是
(-
1
2
,1]
(-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•通州區(qū)一模)已知圓的方程為x2+y2-2x=0,則圓心坐標為( 。

查看答案和解析>>

同步練習冊答案