【題目】已知函數(shù)的圖象過(guò)點(diǎn),且在點(diǎn)處的切線斜率為8.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值與最小值.
【答案】(1)a=4,b=3;(2)函數(shù)f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(3)函數(shù)f(x)在[1,1]上的最大值為6,最小值為
【解析】
(1)由已知,利用f(1)=2,解方程求解即可;
(2) 求出,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;
(3)由(2)知,函數(shù)f(x)在處取得極小值,結(jié)合,比較大小即可得結(jié)果.
(1)由
可得
∵函數(shù)的圖象過(guò)點(diǎn)P(1,2)
∴f (1)=2,∴a+b=1,
又函數(shù)在點(diǎn)處的切線斜率為8,
解得 a=4,b= 3,
(2)由(1)得,
令f ′(x)>0,得 x<3或 ,
令f ′(x)<0,得,
函數(shù)f (x)的單調(diào)增區(qū)間為
函數(shù)f (x)的單調(diào)減區(qū)間為
(3)由(2)知,又函數(shù)f(x)在處取得極小值,,
所以函數(shù)f(x)在[1,1]上的最大值為6,最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且2sin2A+3cos(B+C)=0.
(1)求角A的大;
(2)若△ABC的面積S=,求sinB+sinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】挑選空間飛行員可以說(shuō)是“萬(wàn)里挑一”,要想通過(guò)需要五關(guān):目測(cè)、初檢、復(fù)檢、文考(文化考試)、政審.若某校甲、乙、丙三位同學(xué)都順利通過(guò)了前兩關(guān),根據(jù)分析甲、乙、丙三位同學(xué)通過(guò)復(fù)檢關(guān)的概率分別是0.5、0.6、0.75,能通過(guò)文考關(guān)的概率分別是0.6、0.5、0.4,由于他們平時(shí)表現(xiàn)較好,都能通過(guò)政審關(guān),若后三關(guān)之間通過(guò)與否沒(méi)有影響.
(1)求甲被錄取成為空軍飛行員的概率;
(2)求甲、乙、丙三位同學(xué)中恰好有一個(gè)人通過(guò)復(fù)檢的概率;
(3)設(shè)只要通過(guò)后三關(guān)就可以被錄取,求錄取人數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P﹣ABCD中,四邊形ABCD是菱形,∠BAD=60°,又PD⊥平面ABCD,點(diǎn)E是棱AD的中點(diǎn),F(xiàn)在棱PC上,且AD=PD=4.
(1)證明:平面BEF⊥平面PAD;
(2)若PA∥平面BEF,求四棱錐F﹣BCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若展開(kāi)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為128,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù);
(2)若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)和等于37,求展開(kāi)式中系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:,平均每趟地鐵的載客人數(shù)(單位:人)與發(fā)車時(shí)間間隔近似地滿足下列函數(shù)關(guān)系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過(guò)1000人,試求發(fā)車時(shí)間間隔t的值;
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問(wèn)當(dāng)發(fā)車時(shí)間間隔t為多少分鐘時(shí),平均每趟地鐵每分鐘的凈收益最大? 并求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于,兩點(diǎn)
(1)求曲線的普通方程及直線恒過(guò)的定點(diǎn)的坐標(biāo);
(2)在(1)的條件下,若,求直線的普通方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,那么概率為的事件是( )
A.至多一件一等品B.至少一件一等品
C.至多一件二等品D.至少一件二等品
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com