【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:,平均每趟地鐵的載客人數(shù)(單位:人)與發(fā)車時(shí)間間隔近似地滿足下列函數(shù)關(guān)系:,其中

1)若平均每趟地鐵的載客人數(shù)不超過(guò)1000人,試求發(fā)車時(shí)間間隔t的值;

2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問(wèn)當(dāng)發(fā)車時(shí)間間隔t為多少分鐘時(shí),平均每趟地鐵每分鐘的凈收益最大? 并求出最大凈收益.

【答案】1;(2)當(dāng)發(fā)車時(shí)間間隔為7min時(shí),平均每趟地鐵每分鐘的凈收益最大,最大凈收益為240.

【解析】

1)由題意可知,,求得值;

2)由(1)的分段函數(shù)可得,由分段函數(shù)的單調(diào)性求得函數(shù)的最大值,以及的值.

1)由已知得,當(dāng)時(shí),,不合題意舍去

當(dāng)時(shí),

,

2)由題意得

當(dāng)時(shí),(元),

當(dāng)且僅當(dāng)取等;

當(dāng)時(shí),(元)

當(dāng) .

答: (1)若平均每趟地鐵的載客人數(shù)不超過(guò)1000人,發(fā)車時(shí)間間隔為4min.

(2)當(dāng)發(fā)車時(shí)間間隔為7min時(shí),平均每趟地鐵每分鐘的凈收益最大,最大凈收益為240.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣ax2+bx+c(a,b,c∈R).

(1)若函數(shù)f(x)在x=﹣1和x=3處取得極值,試求a,b的值;

(2)在(1)的條件下,當(dāng)x∈[﹣2,6]時(shí),f(x)<2|c|恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的數(shù)據(jù),201911月全國(guó)(居民消費(fèi)價(jià)格指數(shù)),同比上漲,上漲的主要因素是豬肉價(jià)格的上漲,豬肉加上其他畜肉影響上漲3.27個(gè)百分點(diǎn).下圖是201911一籃子商品權(quán)重,根據(jù)該圖,下列四個(gè)結(jié)論正確的有______

一籃子商品中權(quán)重最大的是居住

一籃子商品中吃穿住所占權(quán)重超過(guò)

③豬肉在一籃子商品中權(quán)重為

④豬肉與其他禽肉在一籃子商品中權(quán)重約為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過(guò)點(diǎn),且在點(diǎn)處的切線斜率為8

1)求的值;

2)求函數(shù)的單調(diào)區(qū)間;

3)求函數(shù)在區(qū)間上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Ax1fx1)),Bx2,fx2))是函數(shù)fx)=2sinωx圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn),若|fx1)﹣fx2|4時(shí),|x1x2|的最小值為

1)求函數(shù)fx)的解析式;

2)求函數(shù)fx)的單調(diào)遞增區(qū)間;

3)當(dāng)時(shí),不等式mfx+2mfx)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C,直線l

當(dāng)時(shí),若圓C與直線l交于AB兩點(diǎn),過(guò)點(diǎn)AB分別作l的垂線與y軸交于D,E兩點(diǎn),求的值;

過(guò)直線l上的任意一點(diǎn)P作圓的切線為切點(diǎn),若平面上總存在定點(diǎn)N,使得,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題表示雙曲線,命題表示橢圓.

1)若命題p與命題q都為真命題,則pq的什么條件?

2)若為假命題,且為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為1,P,Q分別是線段上的動(dòng)點(diǎn),且滿足,則下列命題錯(cuò)誤的是(

A.存在P,Q的某一位置,使

B.的面積為定值

C.當(dāng)時(shí),直線是異面直線

D.無(wú)論PQ運(yùn)動(dòng)到任何位置,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代著名的數(shù)學(xué)家劉徽著有《海島算經(jīng)》.內(nèi)有一篇:“今有望海島,立兩表齊、高三丈,前后相去千步,今后表與前表相直,從前表卻行百二十三步,人目著地望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問(wèn)島高及去表各幾何?”(參考譯文:假設(shè)測(cè)量海島,立兩根標(biāo)桿,高均為5步,前后相距1000步,令前后兩根標(biāo)桿的底部和島的底部在同一水平直線上,從前標(biāo)桿退行123步,人的視線從地面(人的高度忽略不計(jì))過(guò)標(biāo)桿頂恰好觀測(cè)到島峰,從后標(biāo)桿退行127步,人的視線從地面過(guò)標(biāo)桿頂恰好觀測(cè)到島峰,問(wèn)島高多少?島與前標(biāo)桿相距多遠(yuǎn)?)(丈、步為古時(shí)計(jì)量單位,三丈=5步).則海島高度為

A. 1055步 B. 1255步 C. 1550步 D. 2255步

查看答案和解析>>

同步練習(xí)冊(cè)答案