(本小題滿分12分)設(shè)圓C:,此圓與拋物線有四個(gè)不同的交點(diǎn),若在軸上方的兩交點(diǎn)分別為,,坐標(biāo)原點(diǎn)為的面積為。
(1)求實(shí)數(shù)的取值范圍;
(2)求關(guān)于的函數(shù)的表達(dá)式及的取值范圍。
(1);(2),。

試題分析:(1)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240054268281014.png" style="vertical-align:middle;" />解得
………… ………… … ……… …… …… …… …… …  ……… …  ………..4分
(2)設(shè)可得,
得到……… …  … …… … … … ……. . 6分
,所以整理得到
… … ……… …… …… …… …… …  ……… …  ………..8分
,所以…..10分
,所以… …… …… …… …… …  ……… ………..12分
點(diǎn)評(píng):本題考查了圓與拋物線位置關(guān)系的判斷,以及弦長(zhǎng)公式,點(diǎn)到直線距離公式,向量的數(shù)量積公式的應(yīng)用,用到公式較多,平時(shí)做題中應(yīng)注意積累.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積. 
 
(2)過(guò)直角坐標(biāo)平面中的拋物線的焦點(diǎn)作一條傾斜角為的直線與拋物線相交于A,B兩點(diǎn). 用表示A,B之間的距離;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)且斜率不為的直線交橢圓,兩點(diǎn).試問(wèn)軸上是否存在定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

方程+=1({1,2,3,4, ,2013})的曲線中,所有圓面積的和等于       ,離心率最小的橢圓方程為                      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)拋物線方程為,為直線上任意一點(diǎn),過(guò)引拋物線的切線,切點(diǎn)分別為

(1)求證:三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)已知當(dāng)點(diǎn)的坐標(biāo)為時(shí),.求此時(shí)拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。

(1)求AB和OC的長(zhǎng);
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合)。過(guò)點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長(zhǎng)為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為拋物線的焦點(diǎn),點(diǎn)為拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn),最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于、兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

斜率為的直線與雙曲線(a>0,b>0)恒有兩個(gè)公共點(diǎn),則雙曲線離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,用與底面成角的平面截圓柱得一橢圓截線,則該橢圓的離心率為 (    )
A.B.C.D.非上述結(jié)論

查看答案和解析>>

同步練習(xí)冊(cè)答案