精英家教網 > 高中數學 > 題目詳情

【題目】解關于x的方程:
(1)lgx+lg(x﹣3)=1;
(2)

【答案】
(1)解:∵lgx+lg(x﹣3)=lg[x(x﹣3)]=lg(x2﹣3x)=1=lg10

∴x2﹣3x=10,∴x=﹣2或5

∵x>0,∴x=5


(2)解:

,∴x=3


【解析】(1)將不等式轉化為對數的真數的運算,轉化為整式不等式解之;(2)利用指數的冪的運算解答.
【考點精析】根據題目的已知條件,利用函數的零點與方程根的關系的相關知識可以得到問題的答案,需要掌握二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知曲線C1,C2的極坐標方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點O)三點A,B,C.

)求證:

)當時,求點B到曲線C2上的點的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,且f(1)=2,f(2)=3. (I)若f(x)是偶函數,求出f(x)的解析式;
(II)若f(x)是奇函數,求出f(x)的解析式;
(III)在(II)的條件下,證明f(x)在區(qū)間 上單調遞減.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,底面是邊長為2的菱形, ,四邊形是矩形,平面平面.

(1)在圖中畫出過點的平面,使得平面(必須說明畫法,不需證明);

(2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正四棱柱的底面邊長為,高為,現從該正四棱柱的個頂點中任取個點.設隨機變量的值為以取出的個點為頂點的三角形的面積.

(1)求概率;

(2)的分布列,并求其數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一次函數f(x)是R上的增函數,已知f[f(x)]=16x+5,g(x)=f(x)(x+m).
(1)求f(x);
(2)若g(x)在(1,+∞)單調遞增,求實數m的取值范圍;
(3)當x∈[﹣1,3]時,g(x)有最大值13,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)的定義域為[﹣1,5],則函數y=f(3x﹣5)的定義域為(
A.
B.[ , ]
C.[﹣8,10]
D.(CRA)∩B

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】每年的4月23日是“世界讀書日”,某校研究性學習小組為了解本校學生的閱讀情況,隨機調查了本校200名學生在這一天的閱讀時間 (單位:分鐘),將樣本數據整理后繪制成如圖的樣本頻率分布直方圖.

(1)求的值;

(2)試估計該學校所有學生在這一天的平均閱讀時間;

(3)若用分層抽樣的方法從這200名學生中,抽出25人參加交流會,則閱讀時間為, 的兩組中各抽取多少人?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市文化部門為了了解本市市民對當地地方戲曲是否喜愛,從15-65歲的人群中隨機抽樣了人,得到如下的統(tǒng)計表和頻率分布直方圖.

(1)寫出其中的、的值;

(2)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?

(3)在(2)抽取的6人中隨機抽取2人,求這2人都是第3組的概率

查看答案和解析>>

同步練習冊答案