分析 (1)根據(jù)函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),可得f(0)=0,結(jié)合f($\frac{1}{2}$)=$\frac{4}{5}$,可求出a,b值,進而得到函數(shù)f(x)的解析式;
(2)直接利用函數(shù)單調(diào)性的定義進行證明,設(shè)在(-1,1)上任取兩個數(shù)x1,x2,且x1<x2,然后判定f(x1)-f(x2)的符號,從而得到結(jié)論.
解答 解:(1)∵f(x)=$\frac{ax+b}{1+{x}^{2}}$(a,b為常數(shù))是定義在(-1,1)上的奇函數(shù),
且f($\frac{1}{2}$)=$\frac{4}{5}$,
∴f($\frac{1}{2}$)=$\frac{\frac{1}{2}a+b}{1+\frac{1}{4}}$=$\frac{4}{5}$,即$\frac{1}{2}$a+b=1,①,
f(-$\frac{1}{2}$)=$\frac{-\frac{1}{2}a+b}{1+\frac{1}{4}}$=-$\frac{4}{5}$,即-$\frac{1}{2}$a+b=-1,②,
由①②解得:a=2,b=0,
故f(x)=$\frac{2x}{1{+x}^{2}}$;
(2)任取任取兩個數(shù)x1,x2∈(-1,1),且x1<x2,
則f(x1)-f(x2)=$\frac{{2x}_{1}}{1{{+x}_{1}}^{2}}$-$\frac{{2x}_{2}}{1{{+x}_{2}}^{2}}$=$\frac{2{(x}_{1}{-x}_{2})(1{-x}_{1}{•x}_{2})}{(1{{+x}_{1}}^{2})(1{{+x}_{2}}^{2})}$<0
因為x1,x2∈(-1,1),且x1<x2,
∴x1-x2<0,1+x12>0,1+x22>0,1-x1•x2>0
則f(x1)<f(x2)
故函數(shù)f(x)在(-1,1)上單調(diào)遞增.
點評 本題主要考查了函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的證明,解題的關(guān)鍵是化簡判定符號,同時考查了運算求解的能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 13 | B. | 8 | C. | 21 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com