|
|
在三棱錐P-ABC中,△PAC和△PBC是邊長(zhǎng)為的等邊三角形,AB=2,O是AB中點(diǎn).
(Ⅰ)在棱PA上求一點(diǎn)M,使得OM∥平面PBC;
(Ⅱ)求證:平面PAB⊥平面ABC;
(Ⅲ)求二面角P-BC-A的余弦值.
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)雙曲線C的兩個(gè)焦點(diǎn)為,,一個(gè)頂點(diǎn)式(1,0),則C的方程為
________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
函數(shù)y=(a>0且a≠1)的圖象可以是
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)F1、F2分別為雙曲線的左、右焦點(diǎn),若在雙曲線右支上存在點(diǎn)P,滿足PF2=F1F2,且F2到直線PF1的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的漸近線方程為_(kāi)_______.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)=,則f[f(-4)]=
|
[ ] |
A. |
-4
|
B. |
4
|
C. |
-
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
P是雙曲線的右支上一點(diǎn),點(diǎn)M,N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的動(dòng)點(diǎn)則|PM|-|PN|的最小值為
|
[ ] |
A. |
1
|
B. |
2
|
C. |
3
|
D. |
4
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
函數(shù)f(x)=sinxsin(-x)的最小正周期為
|
[ ] |
A. |
2π
|
B. |
|
C. |
π
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知集合A={0,1,2},集合B={x|x>2},則A∩B=
|
[ ] |
A. |
{2}
|
B. |
{0,1,2}
|
C. |
{x|x>2}
|
D. |
|
|
|
查看答案和解析>>