給出下面結論:
①若命題p:“?x0∈R,x02-3x0+2≥0,則¬p:?x∈R,x2-3x+2<0”
②若
1
0
(x2+m)dx=0,則實數(shù)m的值為-
2
3
;
③函數(shù)f(x)=
x
-cosx在[0,+∞)內沒有零點;
④設函數(shù)f(x)=sin3x+|sin3x|,則f(x)為周期函數(shù),最小正周期為
3

其中結論正確的個數(shù)是( 。
A、1B、2C、3D、4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4),若λ為實數(shù),(
b
a
)⊥
c
,則λ的值為( 。
A、
3
11
B、-
3
11
C、1
D、-
3
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點P所在的區(qū)域為線段AB,OB的延長線所形成的區(qū)域,即圖中陰影部分(不含邊界),若
OP
=x
OA
+y
OB
,則實數(shù)對(x,y)可以是( 。
A、(1,
1
2
B、(-
2
3
5
3
C、(
5
3
,-1)
D、(-
1
2
,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?α∈R,sin(π-α)=cosα;命題q:m>0是雙曲線
x2
m2
-
y2
m2
=1的離心率為
2
的充分不必要條件.則下面結論正確的是( 。
A、p∧(¬q)是真命題
B、(¬p)∨q是真命題
C、p∧q是假命題
D、p∨q是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于下列命題:
①在△ABC中,若cos2A=cos2B,則△ABC為等腰三角形;
②△ABC中角A,B,C的對邊分別為a,b,c,若a=2,b=5,A=
π
6
,則△ABC有兩組解;
③設a=sin
2014π
3
,b=cos
2014π
3
,c=tan
2014π
3
,則a<b<c;
④將函數(shù)y=2sin(3x+
π
6
)的圖象向左平移
π
6
個單位,得到函數(shù)y=2cos(3x+
π
6
)的圖象.
其中正確命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列有關命題的說法正確的是( 。
A、命題“x2=1,則x=1”的否命題為“若x2=1,則x≠1”B、命題“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”C、若“p∨q”為真命題,則p,q至少有一個為真命題D、命題“若x=y,則sinx=siny”的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中真命題是( 。
A、相關系數(shù)r(|r|≤1),|r|值越小,變量之間的線性相關程度越高B、“存在x∈R,使得x2+x+1<0”的否定是“對任意x∈R.均有x2+x+1<0”C、命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題D、“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sinα=sinβ是α=β的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x3+3x2-4的單調遞增區(qū)間是( 。
A、(-∞,0)B、(-2,0)C、(0,2)D、(2,+∞)

查看答案和解析>>

同步練習冊答案