分析 (1)設(shè){an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列,運用通項公式可得q=3,d=2,進而得到所求通項公式;
(2)求得cn=an+bn=2n-1+3n-1,再由數(shù)列的求和方法:分組求和,運用等差數(shù)列和等比數(shù)列的求和公式,計算即可得到所求和.
解答 解:(1)設(shè){an}是公差為d的等差數(shù)列,
{bn}是公比為q的等比數(shù)列,
由b2=3,b3=9,可得q=$\frac{_{3}}{_{2}}$=3,
bn=b2qn-2=3•3n-2=3n-1;
即有a1=b1=1,a14=b4=27,
則d=$\frac{{a}_{14}-{a}_{1}}{13}$=2,
則an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)cn=an+bn=2n-1+3n-1,
則數(shù)列{cn}的前n項和為
(1+3+…+(2n-1))+(1+3+9+…+3n-1)=$\frac{1}{2}$n•2n+$\frac{1-{3}^{n}}{1-3}$
=n2+$\frac{{3}^{n}-1}{2}$.
點評 本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,同時考查數(shù)列的求和方法:分組求和,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25 | B. | 26 | C. | 27 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com