2.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(Ⅰ)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(Ⅱ)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

分析 (I)延長AB交直線CD于點M,由點E為AD的中點,可得AE=ED=$\frac{1}{2}$AD,由BC=CD=$\frac{1}{2}$AD,可得ED=BC,已知ED∥BC.可得四邊形BCDE為平行四邊形,即EB∥CD.利用線面平行的判定定理證明得直線CM∥平面PBE即可.
(II)如圖所示,由∠ADC=∠PAB=90°,異面直線PA與CD所成的角為90°AB∩CD=M,可得AP⊥平面ABCD.由CD⊥PD,PA⊥AD.因此∠PDA是二面角P-CD-A的平面角,大小為45°.PA=AD.不妨設(shè)AD=2,則BC=CD=$\frac{1}{2}$AD=1.可得P(0,0,2),E(0,1,0),C(-1,2,0),利用法向量的性質(zhì)、向量夾角公式、線面角計算公式即可得出.

解答 解:(I)延長AB交直線CD于點M,∵點E為AD的中點,∴AE=ED=$\frac{1}{2}$AD,
∵BC=CD=$\frac{1}{2}$AD,∴ED=BC,
∵AD∥BC,即ED∥BC.∴四邊形BCDE為平行四邊形,即EB∥CD.
∵AB∩CD=M,∴M∈CD,∴CM∥BE,
∵BE?平面PBE,∴CM∥平面PBE,
∵M∈AB,AB?平面PAB,
∴M∈平面PAB,故在平面PAB內(nèi)可以找到一點M(M=AB∩CD),使得直線CM∥平面PBE.
(II)如圖所示,∵∠ADC=∠PAB=90°,異面直線PA與CD所成的角為90°,AB∩CD=M,
∴AP⊥平面ABCD.
∴CD⊥PD,PA⊥AD.
因此∠PDA是二面角P-CD-A的平面角,大小為45°.
∴PA=AD.
不妨設(shè)AD=2,則BC=CD=$\frac{1}{2}$AD=1.∴P(0,0,2),E(0,1,0),C(-1,2,0),
∴$\overrightarrow{EC}$=(-1,1,0),$\overrightarrow{PE}$=(0,1,-2),$\overrightarrow{AP}$=(0,0,2),
設(shè)平面PCE的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PE}=0}\\{\overrightarrow{n}•\overrightarrow{EC}=0}\end{array}\right.$,可得:$\left\{\begin{array}{l}{y-2z=0}\\{-x+y=0}\end{array}\right.$.
令y=2,則x=2,z=1,∴$\overrightarrow{n}$=(2,2,1).
設(shè)直線PA與平面PCE所成角為θ,
則sinθ=$|cos<\overrightarrow{AP},\overrightarrow{n}>|$=$\frac{|\overrightarrow{AP}•\overrightarrow{n}|}{|\overrightarrow{AP}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{9}×2}$=$\frac{1}{3}$.

點評 本題考查了空間位置關(guān)系、空間角計算公式、法向量的性質(zhì),考查了空間想象能力、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知各項都為正數(shù)的數(shù)列{an}滿足a1=1,an2-(2an+1-1)an-2an+1=0.
(1)求a2,a3;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.與$\frac{π}{3}$終邊相同的角的集合是{α|α=2kπ+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式組$\left\{\begin{array}{l}{x+2y≥1}\\{x-3y≤1}\\{{x}^{2}+{y}^{2}-2x≤3}\end{array}\right.$表示的平面區(qū)域的面積為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4
(1)求{an}的通項公式;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}是各項均為正數(shù)的等差數(shù)列,公差為d,對任意的n∈N+,bn是an和an+1的等比中項.
(1)設(shè)cn=bn+12-bn2,n∈N+,求證:數(shù)列{cn}是等差數(shù)列;
(2)設(shè)a1=d,Tn=$\sum_{k=1}^{2n}$(-1)kbk2,n∈N*,求證:$\sum_{i=1}^{n}\frac{1}{{T}_{k}}$<$\frac{1}{2erxa7wi^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和Sn=1+λan,其中λ≠0.
(1)證明{an}是等比數(shù)列,并求其通項公式;
(2)若S5=$\frac{31}{32}$,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等差數(shù)列{an}中,若an=8-3n.
(1)求{an}前n項之和Sn;
(2)求數(shù)列{|an|}的前10項之和T10;
(3)求數(shù)列{|an|}的前n項之和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知(x+1)2(x+2)2011=a0+a1(x+2)+a2(x+2)2+…+a2013(x+2)2013,求$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2013}}{{2}^{2013}}$的值.

查看答案和解析>>

同步練習(xí)冊答案