證明:斜線上任意一點在平面上的射影,一定在斜線的射影上.

答案:略
解析:

解題思路:解析:如下圖,AC是平面α的斜線,點C是斜足,ABα,點B是垂足.則BCAC在平面α上的射影.在AC上任取一點P,過點PPOα,垂足為O

ABα,∴POAB,∵點PA、BC三點確定的平面上,因此,PO平面ABC,∴OBC


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點.(1,
2
2
)
,離心率為
2
2
,左、右焦點分別為F1、F2.點p為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.
(1)求橢圓的標準方程;
(2)設(shè)直線PF1、PF2的斜線分別為k1、k2.①證明:
1
k1
-
3
k2
=2
;②問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省毫州市高二上學期質(zhì)量檢測理科數(shù)學 題型:解答題

如圖,已知橢圓過點.,離心率為,左、右焦點分別為.點為直線上且不在軸上的任意一點,直線與橢圓的交點分別為、,為坐標原點.

(I)求橢圓的標準方程;

(II)設(shè)直線的斜線分別為、.      證明:

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省嘉興一中高三(上)10月月考數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,已知橢圓過點.,離心率為,左、右焦點分別為F1、F2.點p為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.
(1)求橢圓的標準方程;
(2)設(shè)直線PF1、PF2的斜線分別為k1、k2.①證明:;②問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學試卷精編:8.1 橢圓(解析版) 題型:解答題

如圖,已知橢圓過點.,離心率為,左、右焦點分別為F1、F2.點p為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.
(1)求橢圓的標準方程;
(2)設(shè)直線PF1、PF2的斜線分別為k1、k2.①證明:;②問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案