分析 (1)利用復(fù)數(shù)的運(yùn)算法則和幾何意義即可得出.
(2)根據(jù)向量的夾角公式計(jì)算即可
解答 解:(1)設(shè)z=c+di,則z+2i=c+(d+2)I為實(shí)數(shù),
∴d=-2,即z=c-2i,
又$\frac{z}{2-i}=\frac{c-2i}{2-i}=\frac{2c+2+(c-4)i}{5}$為實(shí)數(shù),
∴c=4,
∴z=4-2i.
而(z+ai)2=(4-2i+ai)2=16-(2-a)2-8(2-a)i 對應(yīng)的點(diǎn)在第一象限,
∴$\left\{{\begin{array}{l}{16-{{(2-a)}^2}>0}\\{-8(2-a)>0}\end{array}}\right.$,
解得2<a<6.
(2)設(shè)$\overrightarrow a,\overrightarrow b$的夾角為α,$\overrightarrow a$=(3,0),$\overrightarrow b$=(5,5),
則$cosα=\frac{\overrightarrow a•\overrightarrow b}{{|{\overrightarrow a}|•|{\overrightarrow b}|}}=\frac{3×(-5)-0×5}{{3•\sqrt{25+25}}}=-\frac{{\sqrt{2}}}{2}$,
∵0≤α≤π,
∴α=$\frac{3}{4}$π.
點(diǎn)評 本題考查了復(fù)數(shù)的幾何意義、不等式組的解法等基礎(chǔ)知識與基本技能方法,考查了推理能力和計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |$\overrightarrow{a}$|+4|$\overrightarrow$|=0 | B. | $\overrightarrow{a}$與$\overrightarrow$是相反向量 | C. | $\overrightarrow{a}$與$\overrightarrow$的方向相同 | D. | $\overrightarrow{a}$與$\overrightarrow$的方向相反 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{4}{5},+∞})$ | B. | $[{\frac{4}{5},+∞})$ | C. | $[{\frac{1}{3},+∞})$ | D. | (-∞,1)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 3 | 6 | 7 | 8 |
y | 1 | 2 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com