已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).

(Ⅰ)求橢圓E的方程;

(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

 

【答案】

(Ⅰ);(Ⅱ)先把表示出來,得,同理,從而命題得證.

【解析】

試題分析:

(Ⅰ)先利用到直線的距離得,求出,再求出,從而得橢圓方程為;(Ⅱ)先利用為直角三角形,求出,又,可得,同理得,所以,同理可得,繼而得到.

試題解析:(Ⅰ)設(shè)點(diǎn),則到直線的距離為

,即,                  (2分)

因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013092200310898107911/SYS201309220032065213799800_DA.files/image005.png">在圓內(nèi),所以,故;                  (4分)

因?yàn)閳A的半徑等于橢圓的短半軸長,所以,

橢圓方程為.                          (6分)

(Ⅱ)因?yàn)閳A心到直線的距離為,所以直線與圓相切,是切點(diǎn),故為直角三角形,所以

,可得,                     (7分)

,又,可得,         (9分)

所以,同理可得,             (11分)

所以,即.       (12分)

考點(diǎn):直線與橢圓的位置關(guān)系的綜合應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心C在y軸上,且圓C與直線y=x+1相切,點(diǎn)A(-1,-2)在圓內(nèi),圓半徑等于2
2

(1)求圓的方程;
(2)求經(jīng)過點(diǎn)A的最短弦所在的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C以(3,-1)為圓心,5為半徑,過點(diǎn)S(0,4)作直線l與圓C交于A,B兩點(diǎn).
(1)若AB=8,求直線l的方程;
(2)當(dāng)直線l的斜率為-2時(shí),在l上求一點(diǎn)P,使P到圓C的切線長等于PS;
(3)設(shè)AB的中點(diǎn)為N,試在平面上找一定點(diǎn)M,使MN的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省十所名校高三第三次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).

(Ⅰ)求橢圓E的方程;

(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州市高三第十三次調(diào)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),(x2,y2).

(Ⅰ)求橢圓E的方程;

(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案