已知函數(shù)g(x)=
1
x
+lnx
,f(x)=mx-
m-1
x
-lnx(m∈R)

(Ⅰ)若y=f(x)-g(x)在[1,+∞)上為單調函數(shù),求m的取值范圍;
(Ⅱ)設h(x)=
2e
x
,若在[1,e]上至少存在一個x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.
分析:(Ⅰ)y=f(x)-g(x)在[1,+∞)上為單調函數(shù),即y′≥0或y′≤0在[1,+∞)上恒成立,從而轉化為函數(shù)最值處理;
(Ⅱ)構造函數(shù)F(x)=f(x)-g(x)-h(x),則在[1,e]上至少存在一個x0,使得f(x0)-g(x0)>h(x0)成立,等價于x∈[1,e]時,F(xiàn)(x)max>0,進而轉化為求函數(shù)最大值問題.
解答:解:(Ⅰ)y=f(x)-g(x)=mx-
m
x
-2lnx,y′=
mx2-2x+m
x2

由于y=f(x)-g(x)在其定義域內為單調函數(shù),則mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)上恒成立,
即m
2x
x2+1
或者m
2x
x2+1
在[1,+∞)上恒成立,
而0<
2x
x2+1
=
2
x+
1
x
≤1,故m≥1或者m≤0,
綜上,m的取值范圍是(-∞,0]∪[1,+∞).
(Ⅱ)構造函數(shù)F(x)=f(x)-g(x)-h(x),F(xiàn)(x)=mx-
m
x
-2lnx-
2e
x
,
①當m≤0時,由x∈[1,e]得,mx-
m
x
≤0,-2lnx-
2e
x
<0,
所以在[1,e]上不存在一個x0,使得f(x0)-g(x0)>h(x0);            
②當m>0時,F(xiàn)′(x)=m+
m
x2
-
2
x
+
2e
x2
=
mx2-2x+m+2e
x2
,
因為x∈[1,e],所以2e-2x≥0,mx2+m>0,所以F′(x)>0在[1,+∞)上恒成立,故F(x)在x∈[1,e]上單調遞增,
F(x)max=me-
m
e
-4,只要me-
m
e
-4>0,解得m>
4e
e2-1
,
故m的取值范圍是(
4e
e2-1
,+∞).
點評:本題考查應用導數(shù)研究函數(shù)的單調性、最值問題,考查學生分析問題解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=1-cos(πx+2φ)(0<φ<
π
2
)
的圖象過點(
1
2
,  2)
,若有4個不同的正數(shù)xi滿足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),則x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域為A,定義在A上的函數(shù)f(x)=x-2-x2(x∈A).
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)的單調性并用定義證明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=
1-2x1+2x
.判斷并證明函數(shù)g(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,則函數(shù)g(x+3)的零點所在的區(qū)間為( 。
A、(-1,0)
B、(-4,-3)
C、(-3,-2)或(-2,-1)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=
-1,x>0
0,x=0
1,x<0
,函數(shù)f(x)=x2?g(x),則滿足不等式f(a-2)+f(a2)>0的實數(shù)a的取值范圍是( 。
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步練習冊答案