在如圖所示的幾何體中,△ABC是邊長(zhǎng)為2的正三角形,AE>1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.
(I)若AE=2,求證:AC∥平面BDE;
(II)若二面角A-DE-B為60°,求AE的長(zhǎng).

【答案】分析:(Ⅰ)分別取BC、BA、BE的中點(diǎn)M、N、P,連接DM、MN、NP、DP.由三角形中位線定理,證出NP∥AE且.根據(jù)等腰△BCD的“三線合一”證出DM⊥BC,利用面面垂直的性質(zhì)定理證出DM⊥平面ABC,結(jié)合AE⊥平面ABC得到DM∥AE.因此得到DM∥NP且DM=NP,從而四邊形DMNP為平行四邊形,得到MN∥DP,根據(jù)線面平行判定定理證出AC∥平面BDE;
(Ⅱ)過(guò)M作MQ⊥ED的延長(zhǎng)線于Q,連結(jié)BQ.由線面垂直的判定與性質(zhì),證出ED⊥BQ可得∠MQB為二面角A-ED-B的平面角,即∠MQB=60°.在Rt△BMQ中,算出MQ、BQ的長(zhǎng),在Rt△MND中算出DQ的長(zhǎng).設(shè)AE=h+1,可得DE、BE、QE關(guān)于h的表達(dá)式,在Rt△BQE中利用勾股定理建立關(guān)于h的方程,解之即可得到h的值,從而得到AE的長(zhǎng).
解答:解:(Ⅰ)分別取BC、BA、BE的中點(diǎn)M、N、P,連結(jié)DM、MN、NP、DP,
則MN∥AC,NP∥AE,且
∵BD=CD,BC=2,M為BC的中點(diǎn),∴DM⊥BC,DM=1
又∵平面BCD⊥平面ABC,平面BCD∩平面ABC=BC,BC?平面BCD
∴DM⊥平面ABC…(2分)
又∵AE⊥平面ABC,∴DM∥AE…(4分)
∴DM∥NP,且DM=NP,可得四邊形DMNP為平行四邊形,
∴MN∥DP,可得AC∥DP,
又∵AC?平面BDE,DP?平面BDE,∴AC∥平面BDE.…(6分)
(Ⅱ)過(guò)M作MN⊥ED的延長(zhǎng)線于Q,連結(jié)BQ.
∵BC⊥AM,BC⊥DM,∴BC⊥平面DMAE,
結(jié)合ED?平面DMAE,可得BC⊥ED.
∴ED⊥平面BMQ,
∵BQ?平面BMQ,∴ED⊥BQ.
因此,∠MQB為二面角A-ED-B的平面角,即∠MQB=60°.…(9分)
在Rt△BMQ中,BM=1,則,;在Rt△MND中,
設(shè)AE=h+1,則,可得,
又∵
∴在Rt△BQE中,BE2=BQ2+QE2,即(h+1)2+22=
解之得,可得…(12分)
點(diǎn)評(píng):本題在三棱錐中證明線面平行,并在已知二面角的大小為60度的情況下求線段AE的長(zhǎng).著重考查了三角形中位線定理、空間直線與平面平行的判定定理、直線與平面垂直的判定與性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,四邊形ABCD、ADEF、ABGF均為全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求證:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,平行四邊形ABCD的頂點(diǎn)都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F(xiàn)分別為BP,CP的中點(diǎn).
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中點(diǎn).
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)在EB上是否存在一點(diǎn)P,使得∠CPD最大?若存在,請(qǐng)求出∠CPD的正切值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)線段ED上是否存在點(diǎn)Q,使平面EAC⊥平面QBC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中點(diǎn). 
(1)求證:CM⊥平面ABDE;
(2)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案