圓臺側(cè)面積為2π,母線l與底面所成角為60°,上底半徑為x,下底半徑為y (y>x>0),則函數(shù)y=f (x)的圖象是( 。ㄗⅲ簣A臺側(cè)面積公式S=π(r1+r2)l)
A、
B、
C、
D、
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:函數(shù)的性質(zhì)及應(yīng)用,空間位置關(guān)系與距離
分析:利用圓臺的側(cè)面積公式,推出函數(shù)的關(guān)系式,判斷選項即可.
解答: 解:∵圓臺側(cè)面積為2π,母線l與底面所成角為60°,上底半徑為x,下底半徑為y (y>x>0),
又圓臺側(cè)面積公式S=π(r1+r2)l,
∴2π=π(x+y)
y-x
cos60°

∴y2-x2=1,
可得函數(shù)的關(guān)系式為:y=
1-x2

函數(shù)的圖象為:C.
故選:C.
點評:本題考查旋轉(zhuǎn)體側(cè)面積公式的應(yīng)用,函數(shù)的圖象,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知實數(shù)a使得只有一個實數(shù)x滿足關(guān)于x的不等式|x2+2ax+3a|≤2,求滿足條件的所有的實數(shù)a的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從2名男生和2名女生中,任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為(  )
A、
1
3
B、
5
12
C、
1
2
D、
7
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對任意x∈R都有f′(x)>f(x)成立,則( 。
A、f(ln2014)<2014f(0)
B、f(ln2014)=2014f(0)
C、f(ln2014)>2014f(0)
D、f(ln2014)與2014f(0)的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個正方體紙盒的展開圖,把1、-1、2、-2、
2
、-
2
分別填入六個正方形,使得按虛線折成正方體后,相對面上的兩個數(shù)的絕對值相等,求不同填法的種數(shù)(  )
A、3B、6C、24D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)|
AB
|=2,|
AC
|=3,∠BAC=60°,
CD
=2
BC
,
AE
=x
AD
+(1+x)
AB
,x∈[0,1],則
AE
AC
上的投影的取值范圍是( 。
A、[0,1]
B、[0,7]
C、[1,9]
D、[9,21]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),對任意x∈R都有f(x+4)=f(x)+2f(2),且f(-1)=2,則f(2013)等于(  )
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+ax-lnx(a∈R).
(Ⅰ)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)過坐標(biāo)原點O作曲線y=f(x)的切線,證明:切點的橫坐標(biāo)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
m
=(cos2
x
2
3
sinx),
n
=(2,1),函數(shù)f(x)=
m
n

(Ⅰ)當(dāng)x∈[-
π
3
,
π
2
]時,求函數(shù)f(x)的取值范圍;
(Ⅱ)當(dāng)f(α)=
13
5
,且-
3
<α<
π
6
時,求sin(2α+
π
3
)的值.

查看答案和解析>>

同步練習(xí)冊答案