若x∈(-∞,-1],不等式m•9x+3x+1>0恒成立,則實(shí)數(shù)m的取值范圍為
m>-12
m>-12
分析:先3-x=t∈[3,+∞),將題目轉(zhuǎn)化成-m<t+t2,t∈[3,+∞)恒成立,從而求出m的范圍.
解答:解:∵x∈(-∞,-1],
∴令3-x=t∈[3,+∞)
∵m•9x+3x+1>0恒成立
∴-m<t+t2,t∈[3,+∞)恒成立
∴-m<12即m>-12
故答案為:m>-12
點(diǎn)評(píng):本題主要考查了函數(shù)恒成立問(wèn)題,同時(shí)考查了二次函數(shù)的最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例4.若x∈(0,1),a>0且a≠1,求證:|loga(1-x)|>loga(1+x)|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3x+2.
(1)求出函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若x∈(-2,1],求出f(x)的最大值和最小值;
(3)根據(jù)實(shí)數(shù)k的不同值,討論方程f(x)-k=0實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+(a+1)x+a
x
(x>0,a是大于零的常數(shù))

(1)求證:b≤(
a
+1)2
是f(x)≥b的充要條件;
(2)若x∈(0,1]時(shí),f(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx,g(x)=px-
x36

(I)若y=f(x)與y=g(x)在(0,0)處有相同的切線,求p的值
(II)在(I)的條件下,求證:當(dāng)x∈(0,1)時(shí),f(x)>g(x)恒成立
(III)若x∈(0,1)時(shí)f(x)>g(x)恒成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武漢模擬)若x,y滿足
1≤x+y≤3
-1≤x-y≤1
,則x2+y2
的取值范圍為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案