分析 先利用賦值法,令a=b=1,則f(1)+f(1)=f(2)-1,求出f(2)=1,f(x2-1)+f(1-x)>0等價(jià)于f(x2-x)>f(2),根據(jù)函數(shù)的單調(diào)性,得到x的不等式,解得即可.
解答 解:∵f(1)=0,f(a)+f(b)=f(a+b)-1
令a=b=1,則f(1)+f(1)=f(2)-1,
∴f(2)=1,
∴f(x2-1)+f(1-x)=f(x2-1+1-x)-1=f(x2-x)-1,
∵f(x2-1)+f(1-x)>0,
∴f(x2-x)-1>0,
∴f(x2-x)>f(2),
∵函數(shù)f(x)是定義R上的增函數(shù),
∴x2-x>2,
解得x>2或x<-1,
故關(guān)于x的不等式f(x2-1)+f(1-x)>0的解集是(-∞,-1)∪(2,+∞),
故答案為:(-∞,-1)∪(2,+∞).
點(diǎn)評(píng) 本題考查了抽象函數(shù)的問(wèn)題,常采用數(shù)賦值法,根據(jù)函數(shù)的單調(diào)性得到不等式,解得即可,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b≤-2或b≥3 | B. | -2≤b≤3 | C. | -2<b<3 | D. | b<-2或b>3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com