如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.
精英家教網(wǎng)

精英家教網(wǎng)
(1)證明:由直四棱柱,得BB1DD1且BB1=DD1,所以BB1D1D是平行四邊形,
所以B1D1BD.
而BD?平面A1BD,B1D1?平面A1BD,
所以B1D1平面A1BD.
(2)證明:因為BB1⊥面ABCD,AC?面ABCD,所以BB1⊥AC,
又因為BD⊥AC,且BD∩BB1=B,
所以AC⊥面BB1D,
而MD?面BB1D,所以MD⊥AC.
(3)當點M為棱BB1的中點時,平面DMC1⊥平面CC1D1D
取DC的中點N,D1C1的中點N1,連接NN1交DC1于O,連接OM.
因為N是DC中點,BD=BC,所以BN⊥DC;又因為DC是面ABCD與面DCC1D1的交線,而面ABCD⊥面DCC1D1,
所以BN⊥面DCC1D1
又可證得,O是NN1的中點,所以BMON且BM=ON,即BMON是平行四邊形,所以BNOM,所以O(shè)M⊥平面CC1D1D,因為OM?面DMC1,所以平面DMC1⊥平面CC1D1D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

19、如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

18、如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、如圖所示,在直四棱柱M中,DB=BC,MN,點EN是棱MN上一點.
(1)求證B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:解答題

如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪復習鞏固與練習:空間中的垂直關(guān)系(解析版) 題型:解答題

如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

同步練習冊答案