精英家教網 > 高中數學 > 題目詳情

已知函數.
(1)求的單調遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對任意,都有;
(3)若,對于任意,都有成立,求實數的取值范圍.

(1)上遞增,
(2)主要是根據題意,由(1)得:上遞增來得到最值,進而證明。
(3)

解析試題分析:.解:(1)當   2分
上遞增  4分
(2)  6分
由(1)得:上遞增  6分
  8分
  10分
(3)設,由(1)得:
等價于
即:
上為減函數   13分

恒成立
得:  16分
考點:導數的運用
點評:主要是考查了運用導數研究函數的單調性的運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

函數
(1)當時,對任意R,存在R,使,求實數的取值范圍;
(2)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
⑴求函數的單調區(qū)間;
⑵記函數,當時,上有且只有一個極值點,求實數的取值范圍;
⑶記函數,證明:存在一條過原點的直線的圖象有兩個切點

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求的單調區(qū)間;
(Ⅱ)求在區(qū)間上的最值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若,求函數的單調區(qū)間;
(Ⅱ)若函數的圖象在點(2,f(2))處的切線的傾斜角為,對于任意的,函數 的導函數)在區(qū)間上總不是單調函數,求的取值范圍;  
(Ⅲ)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,當時,取得極大值;當時,取得極小值.
、、的值;
處的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關系式,其中3<x<6,a 為常數,已知銷售價格為5元/千克時,每日可售出該商品11千克。
(I)求a的值
(II)若該商品的成品為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若曲線處的切線互相平行,求的值;
(2)求的單調區(qū)間;
(3)設,若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知時有極大值6,在時有極小值,求a,b,c的值;并求區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習冊答案