【題目】在平面直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點(diǎn)P(1,2),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
【答案】解:(Ⅰ)消去θ得到橢圓C的普通方程為 .
∵直線 的斜率為 ,∴直線l的傾斜角為 .
(Ⅱ)把直線 的方程 ,代入 中,
得 .
即 ,
∴t1·t2=4,即|PA|·|PB|=4.
【解析】(Ⅰ)利用sin2θ+cos2θ=1消去θ,從而得到橢圓的普通方程,根據(jù)參數(shù)方程可知直線l定過(guò)點(diǎn)(1,2),從而斜率為,即為,從而求得直線l的傾斜角;(Ⅱ)因?yàn)?/span>,所以|PA|·|PB|=t1·t2=4.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線的傾斜角和橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定α=0°;橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足: , .
()求, , 的值.
()求證:數(shù)列是等比數(shù)列.
()令,如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測(cè)試的原始成績(jī)采用百分制,發(fā)布成績(jī)使用等級(jí)制.各等級(jí)劃分標(biāo)準(zhǔn)如下:85分及以上,記為A等;分?jǐn)?shù)在[70,85)內(nèi),記為B等;分?jǐn)?shù)在[60,70)內(nèi),記為C等;60分以下,記為D等.同時(shí)認(rèn)定A,B,C為合格,D為不合格.已知某學(xué)校學(xué)生的原始成績(jī)均分布在[50,100]內(nèi),為了了解該校學(xué)生的成績(jī),抽取了50名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.
(Ⅰ)求圖中x的值,并根據(jù)樣本數(shù)據(jù)估計(jì)該校學(xué)生學(xué)業(yè)水平測(cè)試的合格率;
(Ⅱ)在選取的樣本中,從70分以下的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用X表示所抽取的3名學(xué)生中成績(jī)?yōu)镈等級(jí)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為
(1)求數(shù)列的通項(xiàng)公式;
(2)將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列,請(qǐng)直接寫出數(shù)列的通項(xiàng)公式;
(3)記,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)O和點(diǎn)F2(﹣ ,0)分別為雙曲線 =1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點(diǎn).
下列結(jié)論中正確的個(gè)數(shù)有 ( )
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1.
④三棱錐N-A1BC的體積為=a3.
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D、E分別是AB、AC的中點(diǎn),M是直線DE上的動(dòng)點(diǎn).若△ABC的面積為2,則 + 2的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M:與軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線與圓M相切,為切點(diǎn),求四邊形面積的最小值.
【答案】(1) (2) (3)
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令,得到關(guān)于的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問(wèn)題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1) ∵圓M:與軸相切
∴ ∴
(2) 令,則 ∴
∴
(3)
∵的最小值等于點(diǎn)到直線的距離,
∴ ∴
∴四邊形面積的最小值為.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓與軸交于, 兩點(diǎn),設(shè)直線的方程為.
(1)當(dāng)直線與圓相切時(shí),求直線的方程;
(2)已知直線與圓相交于, 兩點(diǎn).
(。┤,求實(shí)數(shù)的取值范圍;
(ⅱ)直線與直線相交于點(diǎn),直線,直線,直線的斜率分別為, , ,
是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com