12.不等式($\frac{1}{3}$)x-1<3-2x的解集為{x|x<-1}.

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)得到1-x<-2x,解出即可.

解答 解:∵($\frac{1}{3}$)x-1<3-2x,
∴31-x<3-2x
∴1-x<-2x,
解得:x<-1,
故答案為:{x|x<-1}.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì),考查不等式的解法以及轉(zhuǎn)化思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=1008xln(e4x+1)-2016x2+1,f(a)=2,則f(-a)的值為( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)實(shí)數(shù)x,y滿(mǎn)足不等式組$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ y≥-1\end{array}\right.$,則2x+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示的幾何體中,ABC-A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-C1D-C的余弦值為$\frac{{\sqrt{5}}}{5}$,求三棱錐C1-A1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.M是橢圓T:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上任意一點(diǎn),F(xiàn)是橢圓T的右焦點(diǎn),A為左頂點(diǎn),B為上頂點(diǎn),O為坐標(biāo)原點(diǎn),已知|MF|的最大值為3+$\sqrt{5}$,最小值為3-$\sqrt{5}$.
(I)求橢圓T的標(biāo)準(zhǔn)方程;
(II)求△ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}{(3-a)x-3,x≤7}\\{{a}^{x-6},x>7}\end{array}\right.$單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{9}{4}$,3)B.[$\frac{9}{4}$,3)C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB的中點(diǎn).
(1)求證:BD1∥平面A1DE;
(2)求直線(xiàn)A1E與平面AD1E所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1的各個(gè)頂點(diǎn)與各棱的中點(diǎn)共20個(gè)點(diǎn)中,任取2點(diǎn)連成直線(xiàn),在這些直線(xiàn)中任取一條,它與對(duì)角線(xiàn)BD1垂直的概率為( 。
A.$\frac{27}{190}$B.$\frac{12}{166}$C.$\frac{15}{166}$D.$\frac{27}{166}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=x2+4x+3,x∈[-3,+∞)的值域是[-1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案